FINAL

TECHNICAL MEMORANDUM

South Oxnard Plain Brackish Water Treatment Feasibility Study

Engineers...Working Wonders With Water®

UNITED WATER CONSERVATION DISTRICT

SOUTH OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILITY STUDY

TECHNICAL MEMORANDUM

August 2014

UNITED WATER CONSERVATION DISTRICT

SOUTH OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILITY STUDY

TECHNICAL MEMORANDUM

TABLE OF CONTENTS

Page No.

		-
1.0	EXECUTIVE SUMMARY	1
2.0	BACKGROUND	4
3.0	 WATER QUALITY	5
4.0	 DESIGN CRITERIA 4.1 Process Selection 4.2 System Hydraulics and Plant Hydraulic Profile 4.3 Desalter Preliminary Design Criteria 4.4 Site Layouts 	
5.0	 COSTS AND CONCLUSIONS	

APPENDIX A -	Hydraulic	Modeling	Results

APPENDIX B – Scale Inhibitor Projections

APPENDIX C – Reverse Osmosis performance projections

APPENDIX D – Detailed O&M Estimate

APPENDIX E – Detailed Capital Cost Estimate

LIST OF TABLES

Table 3.1	Proposed Desalter Volumes and Capacities	6
Table 3.2	Proposed Desalter Brine Production	7
Table 3.3	Proposed Desalter Well Field	8
Table 3.4	Raw Water Quality	
Table 3.5	Ideal Product Water Based on Agricultural Requirements	
Table 3.6	SMP Discharge Limits	17
Table 4.1	Sand Separator Criteria	
Table 4.2	Sulfuric Acid Design Criteria	
Table 4.3	Scale Inhibitor Design Criteria	
Table 4.4	Cartridge Filter Criteria	
Table 4.5	Reverse Osmosis Feed Pump Criteria	
Table 4.6	RO Trains	
Table 4.7	RO Train Interstage Booster Pumps	
Table 4.8	Reverse Osmosis Clean-in-Place System Design Criteria	
Table 4.9	Lime Slurry Design Criteria	41
Table 4.10	Sodium Hypochlorite Design Criteria	
Table 4.11	RO Flush Tank	44
Table 4.12	Product Water Storage Tank and Pump Station Criteria	45
Table 5.1	Operation and Maintenance Cost Assumptions	60
Table 5.2	Cost Summary	64

LIST OF FIGURES

Figure 3.1	Proposed Product Water and Brine Pipeline Routes	9
Figure 3.2	TDS in Representative Wells	.11
Figure 3.3	Chloride Concentration in Representative Wells	.12
Figure 3.4	Calcium Concentration in Representative Wells	.13
Figure 3.5	Iron Concentration in Representative Wells	.14
Figure 4.1	10,000 AFY Process Flow and Mass Balance Diagram Design	
-	Raw Water Quality	.23
Figure 4.2	10,000 AFY Process Flow and Mass Balance Diagram Worst Case	
-	Raw Water Quality	.24
Figure 4.3	20,000 AFY Process Flow and Mass Balance Diagram Design Raw Water	25
Figure 4.4	20,000 AFY Process Flow and Mass Balance Diagram Worst Case	
	Raw Water	.26
Figure 4.5	Preliminary Desalter Hydraulic Profile	27
Figure 4.6	Automatic Backwashing Sand Separator	29
Figure 4.7	Cartridge Filter Housings	33
Figure 4.8	RO Feed Pump	35
Figure 4.9	Two Stage Brackish RO Train	37
Figure 4.10	Typical CIP System	40
Figure 4.11	Typical Glass Lined Ground Storage Tank (Photo adapted from	
	CST Industries website - http://www.cstindustries.com/products/aquastore).	46
Figure 4.12	Can-Mounted Vertical Turbine Product Water Pump Station	46
Figure 4.13	10,000 AFY RO Facility – Site Plan	.48
Figure 4.14	10,000 AFY RO Facility – Isometric View Looking Northwest	49
Figure 4.15	10,000 AFY RO Facility – Sand Separators, Cartridge Filters, and	
	RO Systems	50

Figure 4.16	10,000 AFY RO Facility – Chemical Storage, RO Flush Tank, and	
	Product Water Storage	.51
Figure 4.17	10,000 AFY RO Facility – Product Water Pumps, Admin/Storage/Lab/	
	Control/Electrical Rooms	.52
Figure 4.18	20,000 AFY RO Facility – Site Plan	. 53
Figure 4.19	20,000 AFY RO Facility – Isometric View Looking Northwest	. 54
Figure 4.20	20,000 AFY RO Facility – Sand Separators, Cartridge Filters, and	
	RO Systems	.55
Figure 4.21	20,000 AFY RO Facility – Chemical Storage, RO Flush Tank, and	
	Product Water Storage	. 56
Figure 4.22	20,000 AFY RO Facility – Product Water Pumps, Admin/Storage/Lab/	
	Control/Electrical Rooms	.57
Figure 5.1	Potential Connection Point to SMP	. 58
Figure 5.2	Typical SMP Discharge Flow Measurement Station	. 59
Figure 5.3	O&M Cost Sensitivity to Power Costs - Design Raw Water at 10,000 AFY .	. 61
Figure 5.4	O&M Cost Sensitivity to Power Costs - Design Raw Water at 20,000 AFY .	. 62
Figure 5.5	O&M Cost Sensitivity to Power Costs - Worst Raw Water at 10,000 AFY	. 62
Figure 5.6	O&M Cost Sensitivity to Power Costs - Worst Raw Water at 20,000 AFY	. 63

Technical Memorandum SOUTH OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILITY STUDY

1.0 EXECUTIVE SUMMARY

United Water Conservation District (UWCD) is fostering a vision of a regional desalter on the South Oxnard Plain to utilize a local resource impaired by salt-water intrusion. The first steps in developing this vision are to:

- Confirm that a desalter is technically feasible
- Demonstrate a treated water cost that makes desalter development a viable long term water supply option

For a desalter project to be successful, three primary technical questions must be answered:

- Is there raw water available?
- Is there a viable waste brine disposal option?
- Are there customers for the treated water?

Using an assembly of data provided by UWCD, Carollo Engineers, Inc. (Carollo) was tasked with evaluating the basic technical efficacy of groundwater desalting in the South Oxnard Plain and developing conceptual facility concepts and estimates of capital and operating costs.

In order to define the treatment process, raw water quality and finished water goals must be established. UWCD provided water quality data for three representative wells, and the qualities were blended to develop a composite design water quality with a total dissolved solids (TDS) of approximately 6,400 mg/L. A "worst case" water quality was developed by increasing the individual ions by 50 percent, resulting in a raw water TDS of approximately 9,600 mg/L. Therefore, the raw water quality for design ranges from a 6,000 to 10,000 mg/L TDS. Product water quality was defined by UWCD and is consistent with the local growers' needs for irrigation. Based on the raw water quality and product water goals, reverse osmosis (RO) was selected as the most appropriate desalination technology. Further, the proximity of the Salinity Management Pipeline (SMP), constructed and operated by Calleguas Municipal Water District (CMWD), provides a reliable long-term solution for disposal of the brine residuals from the desalter.

Using the water quality information, design criteria were developed for a 10,000 acre-ft/yr (AFY) desalter and a 20,000 AFY desalter. The primary components of the facilities include:

- Wells
- Raw Water Pipelines
- RO Pretreatment
 - Sand Separators
 - Acid Addition
 - Cartridge Filtration
 - Scale Inhibitor Addition
- Reverse Osmosis Systems
 - High Pressure Feed Pumps
 - Membranes and Pressure Vessels
 - Clean-In-Place System
 - RO Flushing System
- Post Treatment
 - Lime addition
 - Chlorine addition
- Product Water Storage
- Product Water Pumping
- Product Water Pipelines to the PTP and PVCWD distribution systems

Estimated unit operating cost assumptions, and site layouts generated for both the 10,000 AFY and 20,000 AFY facilities, budget level capital and operating costs were developed using the developed design criteria. The capital cost for both raw water quality conditions is the same for the RO facility, as it is assumed that the full-scale facility would be capable of accommodating the proposed water quality range. A summary of the costs are as follows:

- Design Water Quality
 - 10,000 AFY
 - Capital Cost = \$85,137,000
 - Operating Cost = \$653/AF
 - Amortized Cost = \$1,111/AF

- 20,000 AFY
 - Capital Cost = \$147,966,000
 - Operating Cost = \$601/AF
 - Amortized Cost = \$998/AF
- Worst Case Water Quality
 - 10,000 AFY
 - Capital Cost = \$85,137,000
 - Operating Cost = \$821/AF
 - Amortized Cost = \$1,278/AF
 - 20,000 AFY
 - Capital Cost = \$147,966,000
 - Operating Cost = \$733/AF
 - Amortized Cost = \$1,130/AF

Based on the information provided by UWCD, SMP costs provided by CMWD, and the process selection, design criteria development, and cost information generated by Carollo, the following conclusions were made:

- The impaired groundwater in the South Oxnard Plain is suitable for treatment by reverse osmosis at an acceptable recovery range of 72 to 80 percent.
- With the exception of pH, the "ideal" product water quality can be met with traditional pretreatment, desalination, and post treatment systems.
- An amortized water cost of \$998 to \$1,111 per AF for the design water condition is competitive with imported water and has superior quality.
- Utilizing impaired groundwater treated to low TDS levels reduces salt import into the region, unlike irrigation with imported water.
- Connection to the SMP at the intersection of Hueneme Road and Edison Avenue is a viable option for concentrate disposal.
- Additional water quality sampling should be performed to confirm that the RO concentrate will comply with the SMP NPDES permit discharge limits.

2.0 BACKGROUND

Many agencies and users in Ventura County, particularly the Calleguas Creek Watershed, have seen an increase in salinity in both groundwater and surface water supplies. The source of the salts is a combination of agricultural, industrial, and residential activities in conjunction with salts in the water imported through the State Water Project.

When early settlers began pumping on the Oxnard Plain to support farming activities, the recipe was in place for the eventual overdraft of the groundwater. For nearly 100 years, United Water Conservation District has battled groundwater overdraft through a combination of aquifer recharge and alternative surface water supplies. Despite these efforts, salt-water intrusion has occurred in the southern Oxnard Plain. Unlike coastal Los Angeles and Orange County, Ventura County has no salt-water intrusion barrier in place, and the salt-impairment renders the groundwater useless for agricultural or potable uses. In fact, chloride levels in the southernmost areas of the Plain are approaching true seawater concentrations, as shown in the graphics provided by UWCD in the Request for Proposals for this project.

Managing the increase in salts will require demineralization of the water, leading many water supply agencies in Ventura County to investigate the efficacy of mining impaired groundwater for potable and non-potable uses. Specifically, UWCD is fostering a vision of a regional desalter on the South Oxnard Plain, where salt water intrusion into the shallow aquifer has occurred. The first steps in developing this vision are to:

- Confirm that a desalter is technically feasible
- Demonstrate a treated water cost that makes desalter development a viable long term water supply option

For a desalter project to be successful, three primary technical questions must be answered:

- Is there raw water available?
- Is there a viable waste brine disposal option?
- Are there customers for the treated water?

Using an assembly of data provided by UWCD, Carollo Engineers, Inc. (Carollo) was tasked with evaluating the basic technical efficacy of groundwater desalting in the South Oxnard Plain and developing conceptual facility concepts and estimates of capital and operating costs. This memorandum presents the results of this analysis, and is organized as follows:

- Section 3: Water Quality
 - An evaluation water quality data provided by UWCD, establishment of design and worst-case raw water quality, and definition of finished water goals.
- Section 4: Design Criteria
 - A discussion of technology selection, specific unit processes components and sizing, raw and product water transmission, and facility site plan and layout.
- Section 5: Capital and Operating Cost Opinion
 - A breakdown of the capital and operating costs, including unit cost assumptions, and amortized costs for two capacities and composite water qualities.

3.0 WATER QUALITY

Throughout this report, the groundwater supply pumped to the proposed treatment facility is referred to as <u>raw water</u>. The output of the treatment facility is referred to as <u>product water</u>, which is either treated water from the facility or a blend of treated and raw water that meets the effluent quality standards. A fundamental rule in water treatment is that the treatment process will be determined based on the design raw water quality and the product water quality goals.

For the South Oxnard Plain desalter, raw water quality and finished water goals were provided to Carollo by UWCD and were used to establish the treatment process. The proposed treatment facility includes among its primary objectives the removal dissolved salts, for example, sodium and chloride ions, from the raw water. Other raw water contaminants are also removed, but the treatment facility is referred to herein as a "desalter" to reflect the removal of salinity and in keeping with standard local terminology.

3.1 Required Capacity

For the purposes of this report, the required product water capacity has been defined as either 10,000 acre-feet per year (AFY) or 20,000 AFY; consequently, tabulations of capacity indicate both values. Capacity requirements for the proposed desalter are expressed in terms of annual volumes and nameplate capacity in Table 3.1.

Table 3.1 Proposed Desalter Volumes and Capacities						
DesalterOverallDesalterAnnualAnnual RawNameplateDesalterOperationProduct WaterWaterCapacityRecoveryFactor						
(AFY)	(AFY)	(mgd)	(percent)	(percent)		
10,000	13,900 to 12,500	8.9	72 to 80	98		
20,000	27,800 to 25,000	17.8	72 to 80	98		

Table 3.1 refers to two parameters that determine raw water volume and desalter nameplate capacity for a given annual product water requirement.

- <u>Recovery</u> is the efficiency of the treatment facility in transforming raw water into product water; in other words, Recovery = Product Water Volume/Raw Water Volume. Overall desalter recovery is dependent upon the processes used and the amount of raw water bypass (if any). As discussed later, an overall desalter recovery range of 72 to 80 percent has been selected for this report and is reflective of both the design and worst-case raw water qualities.
- <u>Operation factor</u> is the ratio between the nameplate capacity of a facility and the annual average flow required to deliver a specified volume of water per year. The operation factor accounts for the fact that facilities are generally unable to operate continuously at nameplate capacity for an entire year.¹ Because of the simplicity of the proposed system and the redundancy assumed for the raw water well field, a desalter operating factor of approximately 98 percent is appropriate.

The nameplate capacity of the desalter is the instantaneous product water flow rate capacity. The nameplate capacity is higher than the average annual flow required to produce the annual product water volume by the ratio of the operation factor.

Similarly, the annual raw water volume is greater than the annual product water volume by the ratio of the overall desalter recovery. The difference between the raw water volume and the product water volume is the amount of treatment byproduct waste. The waste volume is referred to herein as <u>brine</u> because of its high salinity.

¹ The operation factor accounts for equipment downtime for repairs, cleaning, replacement and maintenance, power outages and other shutdowns, both planned and unplanned.

Table 3.2 Pr				
Product Water (AFY)	Brine (AFY)	Desalter Nameplate Capacity (mgd)	Brine Flow at Desalter Nameplate Capacity (mgd)	Overall Recovery (percent)
10,000	3,900 to 2,500	8.9	3.47 to 1.79	72 to 80
20,000	7,800 to 5,000	17.8	6.95 to 3.57	72 to 80

The brine production of the proposed desalter facility is indicated in Table 3.2.

3.2 Proposed Well Field

The number of wells required for the proposed South Oxnard Plain Well Field depends upon the following parameters.

- The product water requirement, which is either 10,000 AFY or 20,000 AFY.
- The overall desalter recovery, which is assumed as 80 percent for the design raw water and 72 percent for the worst-case raw water.
- The overall well field operating factor, which is assumed as not greater than 75 percent.²
- The nameplate capacity of an individual well, which is assumed as 2,000 gpm, or 2.88 mgd.³

The well field operating factor represents the ratio of the total nameplate capacity of the wells and the required volume of raw water per year, expressed as an annual average flow. The risk of *not* producing the required annual product water delivery volume increases as the well field operating factor increases.

² This is a typical well field operating factor for a high reliability water supply. For example, the Chino Basin Desalter Authority (CDA) currently operates two well fields to support two desalters producing approximately 10,000 AF/yr of product water for municipal use. The CDA has "take or pay" contracts with its member agencies and there are significant ramifications if it were unable to produce the required annual contract volumes. The CDA has established criteria of operating factors not less than 70 percent for each well field.

³ This is the proposed nameplate capacity per well given in the project kickoff meeting held March 27, 2014 (see minutes dated April 8, 2014).

Using the previously stated assumptions, Table 3.3 indicates the number of wells needed to produce the raw water required for treatment of 10,000 AFY and 20,000 AFY of product water. The number of wells required has been rounded up to the next integer value and the well field operating factor adjusted accordingly.

Table 3.3 Pro	oposed Desalter V	Vell Field					
Product Water (AF/year)	Raw Water (AF/year)	Average Capacity per Well (gpm)	Number of Wells Required (No.)	Overall Well Field Operating Factor (percent)			
10,000	13,889	2,000	4	108			
			5	86			
			6	72			
20,000	27,778	2,000	10	86			
			11	78			
			12	72			
Note:							
 Bold indicates acceptable well field operating factor (i.e., ≤ 75%) 							

Proposed well locations and pipelines to the desalter facility are shown in Figure 3.1.

3.3 Raw Water Quality

UWCD has provided water quality data for three wells that are proposed as representative of the desalter well field quality.⁴ Although the wells vary in water quality, it is assumed that UWCD would operate wells in various locations to provide a blended water quality that is within the design parameters of the proposed desalter, even under changing water quality conditions.⁵

⁴ Water quality files are "1990-91 USGS Rasa_wq - coastal.xlsx" and "Brackish Study WQ Export.xlsx" provided by Dan Detmer via email dated March 25, 2014.

⁵ See minutes of the project kickoff meeting held March 27, 2014 (minutes dated April 8, 2014).

pw:\\PHX-POP-PW.Carollo.local:Carollo\Documents\Client\CA\UWCD\9514A00\Deliverables\figure 3-1.ai

Carollo

UNITED WATER CONSERVATION DISTRICT OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILITY The three wells that represent the range of potential raw water quality for the well field are as follows.

- Well SW-195 (State ID: 01N22W27C03S)
- Well CM7-190 (State ID: 01N22W27R04S)
- Well CM4-275 (State ID: 01N22W28G04S)

Water quality data provided by UWCD cover a period of approximately 15 years with data collected four times per year for some parameters of interest (e.g., chlorides and TDS) and less frequently, once or twice per year at the most, for other parameters of interest (e.g., calcium, silica and iron).

The water quality in the three representative wells has changed significantly over the past 15 years. As indicated on the following figures, the last four years of record (November 2009 – December 2013) are used for the purposes of creating a current composite raw water quality for design criteria.

- Figure 3.2 indicates TDS levels.
- Figure 3.3 indicates chloride levels.
- Figure 3.4 indicates calcium levels.
- Figure 3.5 indicates iron levels.

Table 3.4 indicates the average water quality for each of the three wells over the past four years for parameters of interest. The water quality data for the individual wells were blended to provide a composite current design water quality with a TDS of approximately 6,400 mg/L. A "worst case" water quality was developed by increasing the individual ions by 50 percent, resulting in a raw water TDS of approximately 9,600 mg/L. Therefore, the raw water quality for design ranges from a 6,000 to 10,000 mg/L TDS.

Table 3.4 Raw Water Qualit	у				
	Well SW- 195	Well CM7- 190	Well CM4- 275	Composite Design Raw Water	Composite Worst Case Raw Water
Calcium (mg/L Ca ²⁺)	139	727	1,565	810	1,216
Magnesium (mg/L Mg ²⁺)	46	374	488	303	454
Sodium (mg/L Na⁺)	438	507	2,285	1,077	1,615
Potassium (mg/L K ⁺)	7.6	17.7	31.9	19.1	28.6
Barium (mg/L Ba ²⁺)	0.0510	0.0155	0.0515	0.0393	0.059
Strontium (mg/L Sr2 ⁺)	4.9	1.3	8.3	4.8	7.2
Iron (mg/L Fe ²⁺)	0.426	1.901	6.581	2.969	4.5
Manganese (mg/L Mn ²⁺)	0.780	0.915	2.476	1.390	2.1
Ammonium (mg/L NH ₄ ⁺)	1.40	0.38	3.95	1.91	2.9
Cations (mg/L)	638	1,630	4,391	2,220	3,330
Bicarbonate (mg/L HCO3 ⁻)	281	192	265	246	369
Sulfate (mg/L SO ₄ ²⁻)	605	691	1,140	812	1,218
Chloride (mg/L Cl ⁻)	496	2,589	6,600	3,228	4,843
Fluoride (mg/L F ⁻)	0.37	0.47	0.29	0.38	0.6
Carbonate (mg/L CO ₃ ²⁻)	0.46	0.40	0.21	0.33	0.5
Nitrate (mg/L NO ₃ ⁻)	1.3	1.2	1.0	1.2	2
Phosphate (mg/L PO43-)	3.4	1.8	0.4	1.9	2.8
Bromide (mg/L Br ⁻)	8.5	1.2	20.3	10.0	15.0
Anions (mg/L)	1,395	3,476	8,027	4,300	6,449
Silica (mg/L SiO ₂)	30.5	32.5	32.0	31.7	47.5
Boron (mg/L B)	0.888	0.098	0.258	0.415	0.622
Color	na 1	na 1	na 1		
Hydrogen Sulfide (mg/L)	na 1	na 1	na 1		
pH (units)	7.30	7.34	6.94	7.14	7.14

Table 3.4	Raw Water Quality					
		Well SW- 195	Well CM7- 190	Well CM4- 275	Composite Design Raw Water	Composite Worst Case Raw Water
Alkalinity (mg/	l as CaCO ₃)	230	157	217	201	302
Hardness (mg	ı/l as CaCO₃)	537	3,355	5,919	3,270	4,906
CO _{2 (mg/L)}		17.4	10.0	36.2	20.0	30.3
TOC (mg/L)		na 1	na 1	na 1		
Temperature	(°C)	19.1	19.1	18.4	18.9	18.9
Total Ions + S	iO ₂	2,064	5,139	12,450	6,551	9,827
TDS by Evapo	pration at 180°C (mg/l)	1,913	7,098	16,671		
TDS by Ion St	ummation (mg/l)	1,921	5,041	12,315	6,426	9,639
Evaporation/Summation Ratio		1.00	1.41	1.35		
Ion Balance Deviation (%)		-2.0	-0.5	1.1	0.4	0.4
Notes:						
(1) na = not av(2) Includes to	ailable tal ions (no silica) and 49 r	percent of	the bicarb	onate con	centration.	

3.4 **Product Water Quality**

Product water quality objectives have been provided by UWCD and are consistent with "ideal" product water based on agricultural requirements. The product water requirements are indicated in Table 3.5.

Table 3.5	Ideal Product Water Based on Agricultural Requirements					
Parameter	Units	Criteria				
Chloride	mg/L	< 50				
Sodium	mg/L	< 50				
Sulfate	mg/L	< 150				
Bicarbonate	mg/L	< 150				
Boron	mg/L	< 0.8				
TDS	mg/L	< 600				
рН	mg/L	> 6.5 and < 7.0				

3.5 Concentrate Water Quality and Disposal Considerations

The Calleguas Municipal Water District (CMWD) has constructed the Salinity Management Pipeline (SMP), which will ultimately run from Simi Valley southwest to an ocean outfall in Port Hueneme. The SMP is an effective, sustainable mechanism for salt export from Ventura County. Since Phase 1 of the SMP runs west along Hueneme Road, it opens the door for desalter development on the South Oxnard Plain.

3.5.1 Discharge Limits

Discharge limits are established by CMWD in concert with the SMP NPDES permit. Table 3.6 presents the SMP discharge limits (taken from the *CMWD Salinity Management Pipeline Information for Potential Dischargers*, November 2011) for the constituents regulated by the NPDES permit.

Table 3.6 SMP Discharge Limits						
Constituent	Units	Average Monthly	Average Weekly	Daily Maximum	Instantaneous Maximum	6-month Median
N- Nitrosodiphenylamine	µg/L	182				
Nitrobenzene	µg/L	358				
PAH	µg/L	0.64				
Arsenic	µg/L			2120	5624	368
Beryllium	µg/L	2.4				
Cadmium	µg/L			292	730	73
Chromium VI	µg/L			584	1460	146
Copper	µg/L			732	2046	75
Lead	µg/L			584	1460	146
Mercury	µg/L			12	29	3
Nickel	µg/L			1460	3650	365
Selenium	µg/L			4380	10950	1095
Silver	µg/L			193	500	40
Thallium	µg/L	146				
Zinc	µg/L			5,264	14,024	884
Cyanide	µg/L			292	730	73
TCDD Equivalents	µg/L	2.85E- 07				
Aldrin	µg/L	0.002				

Table 3.6 SMP Discharge Limits												
Constituent	Units	Average Monthly	Average Weekly	Daily Maximum	Instantaneous Maximum	6-month Median						
Chlordane	µg/L	0.002										
Chlorinated Phenolics	µg/L			292	730	73						
DDT	µg/L	0.012										
Dieldrin	µg/L	0.003										
Endosulfan	µg/L			1.314	1.971	0.657						
Endrin	µg/L			0.292	0.438	0.146						
HCH*	µg/L			0.58	0.88	0.29						
Heptachlor	µg/L	0.004										
Heptachlor Epoxide	µg/L	0.002										
Non-chlorinated Phenolic Compounds	µg/L			8,760	21,900	2,190						
PCBs*	µg/L	0.001										
Toxaphene	µg/L	0.015										
Tributyltin	µg/L	0.102										
Total Residual Chlorine	µg/L			584	4,380	146						
Acute Toxicity	TUa			2.46								
Chronic Toxicity	TUc			73								
Total Suspended Solids	mg/L	60										
Settleable Solids	mL/L	1.0	1.5		3.0							
Ammonia (as N)	µg/L			175,200	438,000	43,800						
BOD (5-day @ 20°C)	mg/L	30	45									
Oil and Grease	mg/L	25	40		75							
Gross alpha	pCi/L			15								
Gross beta	pCi/L			50								
Combined Radium- 226 & Radium-228	pCi/L			5.0								
Tritium	pCi/L			20,000								
Strontium-90	pCi/L			8.0								
Uranium	pCi/L			20								

The water quality data provided by UWCD does not contain information on the constituents listing in Table 3.6 (except for aluminum). For the purposes of this study, it is assumed that these contaminants are not present in the shallow aquifer at levels that would violate the discharge limits after concentration in the RO process. Carollo recommends that the UWCD implement a sampling plan to test for the constituents in Table 3.6 to confirm the stated assumption. The sampling plan should include quarterly sampling for at least one year to capture seasonal variations in quality. The suitability of the sampled wells for capturing the anticipated water quality should be verified with hydrological modeling and well pumping capability (outside to scope of this study). Wells should be pumped during sampling to ensure that the water is representative of the actual aquifer quality.

4.0 DESIGN CRITERIA

As mentioned previously, raw water quality and product water objectives determine the appropriate treatment process options. It is possible to narrow the selection among treatment alternatives that can meet the treatment objectives for a given raw water quality by differentiating them in appropriate selection criteria of importance to the application. Such selection criteria may include reliability, robustness, capital costs, and O&M costs.

4.1 **Process Selection**

A preliminary screening of process alternatives is used to narrow the selection to a single treatment process option.

4.1.1 <u>Preliminary Screening of Process Alternatives</u>

There are three basic process options to be initially evaluated for the proposed South Oxnard Plain desalter facility.

- <u>Reverse osmosis (RO)</u>: a physical membrane process that removes dissolved salts by applying pressure to promote diffusion of water through a semi-permeable membrane. This is the lowest cost treatment process that can meet the product water objectives for the proposed raw water criteria. It is the recommended process.
- <u>Electrodialysis reversal (EDR)</u>: an electrochemical separation process in which ions are transferred through ion exchange membranes by means of a DC voltage. EDR is not energy cost competitive with RO for treating the range of raw water quality (TDS = 5,000 10,000 mg/L) to meet the product water objective (TDS < 600 mg/L). In cases where concentrate disposal is expensive and RO systems are recovery limited by silica, higher EDR energy usage can be offset by higher recovery and lower concentrate disposal costs. However, calcium sulfate is the recovery-limiting constituent for this raw water, so EDR offers no advantage with respect to increased recovery. Therefore, EDR is not considered as the desalination process.

• <u>Thermal distillation processes</u>: not cost effective for treatment of brackish groundwater.

RO is proposed as the most appropriate treatment process for the proposed South Oxnard Plain desalter facility.

4.1.2 <u>RO Process Description</u>

Typical RO membranes used for desalting are formed as flat sheets that combine with spacers into a spiral wound membrane element. The cylindrical membrane elements are stacked in series within a pressure vessel so that pressurized feedwater can be applied to the membrane material. The pressure vessel has separate connections for feedwater, desalted water (permeate), and concentrated dissolved solids (brine).

The RO pressure vessels are staged into an array to produce desirable hydraulics for a given recovery or range of recoveries. A set of pressure vessels grouped into an array as an independent operating unit forms an RO train. Each RO train has constant capacity (measure as permeate flow), thus providing modular increments of capacity for operation of the entire RO plant.

4.1.2.1 Membrane Fouling

RO membranes are designed to remove dissolved contaminants from water but they are not intended to be exposed to particles or biology. The capacity of an RO membrane can decrease over time due to the following types of fouling.

- Particle fouling
- Mineral scaling
- Biological fouling
- Organic fouling

RO elements can be chemically cleaned in place to remove mineral fouling and some types of biological and organic fouling but they cannot be backwashed or flushed to remove particulates. The RO system must be protected from particles and biology.

Protection from biology is simplified when the raw water supply is groundwater, as is the case for the proposed South Oxnard Plain desalter. Protection from particles is provided by careful well construction practices and installation of cartridge filters upstream of the RO system. Wells that produce significant amounts of sand require an additional sand removal process (e.g., self-flushing filter screens) to prevent overloading the cartridge filters.

The recovery of an RO system is limited by the precipitation of chemical foulants in the concentrate. Operation at high recovery can require the addition of an acid (typically sulfuric acid) and scale inhibitors to the RO system feedwater in order to reduce the precipitation of the limiting foulants. Based upon the raw water quality, the limiting foulant for the proposed

desalter is calcium sulfate. Silica concentrations are in excess of solubility, but are below the 180 to 200 mg/L range that is considered reasonably controllable with current scale inhibitors.

Periodic application of clean-in-place (CIP) chemicals can remove calcium sulfate and silica foulants; however, CIP represents an added cost of operation and production downtime. In addition, the aggressive chemicals used for CIP can increase salt passage through the RO membranes and reduce the useful life of the RO elements. The RO design criteria proposed in this report are intended to limit CIP frequency to 3 times per year, on average.

4.1.2.2 Post-treatment

Carbonate alkalinity is significantly reduced via rejection by the RO membranes, but carbon dioxide gas is not. The proposed process includes raw water sulfuric acid addition to depress the feedwater pH, which helps reduce RO element fouling from iron and manganese. However, lowering the pH converts some carbonate alkalinity to carbon dioxide, which then passes through the membrane to the RO permeate. Post-treatment of the RO permeate by addition of a base is required to raise the pH to a level that, in conjuction with the permeate hardness and alkalinity, results in a stable finished water that is not corrosive to distribution system piping (existing and new). Common practice for groundwater desalters is to bypass a portion of the raw water and blend it with the treated permeate to add the necessary hardness and alkalinity to stabilize the finished water. However, due to the stringent chloride goals defined in Table 3.5, no raw water bypass is possible. Therefore, in order to achieve stable finished water, hydrated lime will be added to 1) increase RO permeate pH and convert dissolved CO₂ to bicarbonate alkalinity and 2) add calcium to increase the calcium carbonate precipitation potential (CCPP) to 4 to 10 mg/L, a value recommended to protect distribution system piping from corrosion.

4.1.3 <u>RO System Process Elements</u>

The process flow diagram for the proposed desalter options are shown in Figures 4.1 through 4.4. The diagram shows the following major process elements.

- RO Pretreatment
 - Sand separators to remove sand or other suspended solids larger than 25 micron
 - Cartridge filters to provide the final protective barrier against suspended solids and turbidity.
 - Acid and threshold inhibitor addition for scale control to reduce mineral scaling that may foul the RO membrane elements.
- RO System
 - RO feed pumps for boosting the RO feed pressure.
 - RO membrane trains for removing dissolved solids.

- RO Post-treatment
 - pH adjustment and remineralization with hydrated lime addition.
 - Chlorination with sodium hypochlorite

Each of these process elements is presented in more detail, with preliminary design criteria, later in this section of the report.

4.2 System Hydraulics and Plant Hydraulic Profile

Raw water and product water hydraulics were modeled for both design recoveries and both product water capacities.

4.2.1 Raw Water Hydraulic Modeling Parameters

Raw water pipelines were modeled as HDPE DR13.5 and sized to maintain flow velocities to not more than 5 feet per second. In order to represent worst case operating cost conditions, wells were selected that created the maximum pressure loss and energy usage. In all cases, well output was evenly distributed amongst online wells and pumping requirements were based on delivering the required feedwater at 50 psig at the entrance to the desalter.

4.2.2 <u>Product Water Hydraulic Modeling Parameters</u>

Product water pipelines were modeled as welded steel and sized to maintain flow velocities to not more than 5 feet per second. Additionally, pipeline sizing was selected to allow the entire product water capacity to be delivered to either the PTP or the PVCWD distribution systems. Pipeline routing to the PTP and PVCWD is presented in Figure 3.1 in Section 3.

Hydraulic model outputs are provided in Appendix A for both water quality conditions and both capacities

4.2.3 Desalter Hydraulic Profile

The proposed hydraulic profile for the RO system process is shown in Figure 4.5. The hydraulic profile shows facilities located on the South Oxnard Plain desalter site, including the membrane process, RO flush tank, product water storage tank, and product water pumping. The hydraulic profile represents a general estimate of flow conditions through the plant and includes RO feed pressure points for both the design water and worst case water, as well as product water discharge requirements at both 10,000 AFY and 20,000 AFY.

Carollo

OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILITY

Carollo

OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILITY

TO PVCWD

																								100
																								95
																								90
				•	•	•	•	•	•	•	•	•	•											85
				•		•	•					•												80
																								75
				•		•	•					•												70
				•		•	•					•												65
				•		•	•					•												60
				•		•	•					•												55
				•		•	•					•												50
																								45
																								40
																								35
				•		•	•					•												30
				•		•	•					•												25
	•			•	•	•	•	•	•	•	•	•	•					•			•	•		20
	•			•	•	•	•	•	•	•	•	•	•					•			•	•		15
	•			•	•	•	•	•	•	•	•	•	•					•			•	•		10
	•			•	•	•	•	•	•	•	•	•	•					•			•	•		5
				•	•	•	•	•	•	•	•	•	•											0
																								- 5

Figure No. 4.5 PRELIMINARY DESALTER HYDRAULIC PROFILE UNITED WATER CONSERVATION DISTRICT OXNARD PLAIN BRACKISH WATER TREATMENT FEASIBILTIY

Engineers...Working Wonders With Water **

4.3 Desalter Preliminary Design Criteria

The following material presents a brief overview of the purpose of the major process elements in the proposed desalter facility together with preliminary design criteria for each process element. Design criteria are presented for facilities required to produce annual product water volumes of 10,000 AF/yr and 20,000 AF/yr. These preliminary design criteria are the basis for both the desalter site layouts and the estimated capital and O&M costs presented in this report.

4.3.1 Sand Separators

Groundwater wells have the potential to produce significant amounts of sand. RO systems and their protective upstream cartridge filters are not designed for continuous removal of particles. Therefore, a sand separation process capable of removing sand down to 25-micron size is included in the treatment process.

The sand separators will be located on the raw water line upstream of the cartridge filters. The basic construction consists of a stainless steel main housing, inlet and outlet ports with flanged connections, stainless steel wedgewire filter elements, outlet valves and actuators, and electronic operating controls. The combination of features provides a completely automated backwashing filtration system.

The process begins with fluid passing through the inlet flange, reaching the filter elements by flowing from inside the element to outside. Solids are then trapped on the inside of the wedgewire filter element. As solids loading increases, the differential pressure between the dirty and clean side of the screens increases. When the set differential pressure is reached, typically at 7 psig, the backwash process is triggered. Alternatively, the backwash cycle can be activated based on a time setting.

The backwash process is one complete cycle, which cleans one element at a time in succession. The geared motor turns the backwash discharge arm under the filter element to be cleaned. The backwash discharge valve is then opened by a pneumatic actuator. The quick opening valve and the exposure to atmospheric pressure results in a strong pulsation and high pressure drop within the filter element being cleaned, which forces the particles into the discharge line. During this operation, a small amount of clean fluid is used to complete the cleaning process. A typical self-cleaning cycle takes less than 60 seconds. The cleaning cycle takes place with no interruption in flow to the cartridge filters, although a drop in downstream pressure is observed during each purge cycle. Typically, the flush waste will enter the plant's sewer or will discharge to the brine line

A photo of an automatic backwashing sand separator is presented in Figure 4.6. Design criteria for the sand separators are presented in Table 4.1.

Table 4.1 Sand Separator Crite	eria							
Description	Units	10,000) AFY	20,00	0 AFY			
Vessel Orientation: Vertical								
Filter Type: Wedgewire Screen								
Filter Material: 316 SST								
Filter Rating	micron	2	5	25				
Maximum Pressure Drop								
Clean Filter	psi	2	2	2	2			
Dirty Filter	psi	7	•	7	7			
Number of Vessels								
In-Service	No.	2	2	4	1			
Reliability	No.	C)	()			
Total	No.	2	2	2	1			
Flow Per Vessel (Firm Capacity)								
Maximum (75 Percent Recovery)	gpm (mgd)	4,290	(6.18)	4,293	(6.19)			
Design (83 Percent Recovery)	gpm (mgd)	3,865	(5.57)	3,863	(5.57)			

Figure 4.6 Automatic Backwashing Sand Separator

4.3.2 RO Feedwater Chemical Conditioning

As water is pushed through the RO membranes, sparingly soluble salts of calcium, barium, strontium, and silica are concentrated and can precipitate on the membrane surface. The pretreatment chemicals, sulfuric acid and scale inhibitor, allow operation at supersaturated conditions for calcium carbonate, calcium sulfate, and silica, and prevent iron and manganese fouling, which in turn allows the RO systems to operate at higher system recovery. Higher recovery operation reduces the raw water requirement and the volume of waste concentrate for disposal.

The sulfuric acid storage and feed systems consist of a bulk liquid storage tank and metering pumps for delivery into the RO feedwater. Preliminary design criteria for the feedwater chemical conditioning systems are shown in Tables 4.2 and 4.3. Projections for a typical scale inhibitor are presented in Appendix B.

4.3.3 Cartridge Filters

Cartridge filters are provided as a protective measure to prevent solids from reaching the RO membrane process. Solids, such as fine sands or silts, will result in RO membrane fouling and may cause serious mechanical damage to the RO membranes. The cartridge filters are provided as the final barrier to protect the valuable RO membranes against fouling or damage from particulates.

The cartridge filter vessels share a common inlet manifold as well as a common outlet manifold. Therefore, a single cartridge filter vessel provides redundancy for the entire system if one cartridge filter vessel is out of service for maintenance or replacement of cartridges.

A photo of a cartridge filter housing is presented in Figure 4.7. Preliminary design criteria for the cartridge filters are shown in Table 4.4.

Table 4.2 Sulfuric Acid Design Crit	eria								
Sulfuric Acid Characteristics									
Concentration:	93 %								
Specific Gravity:	1.8								
Solution Strength:	13.94								
		10,0	00 AFY	20,00	00 AFY				
Parameters	Units	Design	Maximum	Design	Maximum				
Product Water									
Chemical Usage									
Location: RO Feed									
Process Flow	mgd	11.1	12.4	22.3	24.7				
Chemical Dose	mg/L	44.0	62.0	44.0	62.0				
Chemical Usage	lb/day	4,085	6,396	8,170	12,791				
Chemical Feed Rate	gpd	293	459	586	918				
Chemical Feed Rate	gph	12.2	19.1	24.4	38.2				
No. of Standby Pumps		1	1	1	1				
No. of Pumps in Service		1	1	2	2				
Chemical Feed Rate Per Pump	gph	12.2	19.1	12.2	19.1				
Chemical Feed Rate Per Pump	gpm	0.20	0.32	0.20	0.32				
Bulk Storage Tanks									
Number of Tanks	No.		1		1				
Tank Capacity, each	gal	5	,000	9,000					
Tank Capacity, total	gal	5	,000	9,000					
Total Usage	gal/day		293	586					
Storage Time	days		17	15					
Delivery Truck Full Load	gal	3	,000	3,000					
Time Between Delivery	davs		10		5				

 $\underline{\omega}$
Table 4.3 Scale Inhibitor Design C	riteria				
Scale Inhibitor Characteristics					
	Avista Vitec 4	000			
Concentration:	100 %				
Specific Gravity:	1.1				
Solution Strength:	9.16				
		10.0	00 AFY	20.00	00 AFY
Parameters	Units	Design	Maximum	Design	Maximum
Product Water		-			
Chemical Usage					
Location: RO Feed					
Process Flow	MGD	11.1	12.4	22.3	24.7
Chemical Dose	mg/L	3.0	5.2	3.0	5.2
Chemical Usage	lb/day	279	536	557	1,073
Chemical Feed Rate	gpd	30	59	61	117
Chemical Feed Rate	gph	1.3	2.4	2.5	4.9
No. of Standby Pumps		1	1	1	1
No. of Pumps in Service		1	1	1	1
Chemical Feed Rate Per Pump	gph	1.3	2.4	2.5	4.9
Chemical Feed Rate Per Pump	gpm	0.02	0.04	0.04	0.08
Bulk Storage Tanks					
Number of Tanks	No.		1		1
Tank Capacity, each	gal	5	5,000	5,	000
Tank Capacity, total	gal	5	,000	5,	000
Total Usage	gal/day		30		61
Storage Time	days		164	1	82
Delivery Truck Full Load	gal	3	3,000	3,	000
Time Between Delivery	days		99		49

Table 4.4 Cartridge Filter Criteria	a				
Description	Units	20,000 AFY			
Vessel Orientation: Horizontal					
Cartridge Filter Type: Melt Blown					
Cartridge Filter Material: Polypropylene					
Cartridge Filter End Connection: Single	e Open End, Dout	ole O-ring			
Cartridge Filter Rating	micron	5	5	Ę	5
Cartridge Filter Length	inches	4	0	4	0
Cartridge Filter Loading Rate					
Maximum (75 Percent Recovery)	gpm/10-inch	4.	1	4.1	
Design (83 Percent Recovery)	gpm/10-inch	3.	7	3.7	
Maximum Pressure Drop					
Clean Filter	psi	3	3	3	
Dirty Filter	psi	1	5	15	
Number of Vessels					
In-Service	No.	3	3	6	
Reliability	No.	()	0	
Total	No.	3	3	6	6
Flow Per Vessel (Firm Capacity)					
Maximum (75 Percent Recovery)	gpm (mgd)	2,860	(4.12)	2,862	(4.12)
Design (83 Percent Recovery)	gpm (mgd)	2,577 (3.71)		2,575	(3.71)
Cartridge Filters Per Vessel	No.	176		176	
Total Number of Catridges	No.	52	28	1,0	56

Figure 4.7 Cartridge Filter Housings

4.3.4 RO Feed Pumps

The purpose of the RO feed pumps is to provide the energy to overcome osmotic pressure and dynamic head losses through the RO system. Each RO feed pump is dedicated to a single RO membrane train. For maximum efficiency, RO feed pumps are multistage vertical turbines, mounted in cans with both the suction and discharge flanges on the pump head. RO feed pumps are typically located in the process room with roof hatches for crane access to the pumps (for maintenance).

A photo of a typical RO feed pump is presented in Figure 4.8. Preliminary design criteria for the RO feed pumps are shown in Table 4.5.

Table 4.5	Reverse Osmosis Feed Pump Criteria				
Des	cription	Units	10,000 AFY	20,000 AFY	
Type: Vertical Cans	Turbine in Close	d Bottom			
Number of Pu	mps				
In-Service		No.	5	10	
Reliability		No.	0	0	
Total		No.	5	10	
Capacity (per	Pump)				
Design (80 Recovery)	Percent	gpm	1,546	1,545	
Maximum (7 Recovery)	72 Percent	gpm	1,716	1,717	
Suction Press	ure				
Maximum (E	Best Case)	psig	50	50	
Design		psig	30	30	
Discharge Pre	ssure				
Design		psig	263	263	
Maximum (\	Vorst Case)	psig	309	309	
Total Dynamic	: Head (TDH)				
Design		ft	538	538	
Maximum (\	Vorst Case)	ft	644	644	
Motor Size					
Pump Efficie	ency	percent	82	82	
Worst Case	BHP	hp	341	341	
Motor hp (p	er Pump)	hp	500	500	
Motor hp (T	otal)	hp	2,500	5,000	
Drive		type	VFD	VFD	

Figure 4.8 RO Feed Pump

4.3.5 RO Membrane Trains

The RO trains receive pressurized feedwater from the RO feed pumps. The pressure "pushes" water through the membranes while salt is rejected. The rejected salts are concentrated into a small percentage of the flow and exit the system as waste. The proposed design criteria will allow the RO trains to operate across a recovery range of 72 to 80 percent.

A photo of a typical two stage brackish RO system is presented in Figure 4.9. Proposed design criteria for the RO trains are shown in Table 4.6.

Table 4.6 RO Trains					
Description	Units	10,00	0 AFY	20,00	0 AFY
Type: Reverse Osmosis (RO)					
Number of Membrane Trains					
In-Service	No.	Ę	5	10	
Reliability	No.	(C	(C
Total	No.	Ę	5	1	0
Train Flux Rate ¹	gfd	13	3.2	13	3.2
Recovery (Permeate/Feed Flow)					
Minimum	percent	7	2	7	2
Design	percent	8	0	8	0
Total Permeate Flow per Train	gpm (mgd)	1,236	(1.78)	1,236	(1.78)
Second Stage Permeate Flow per Train	gpm (mgd)	411	(0.59)	408	(0.59)
Brine Flow per Train					
Design	gpm (mgd)	309	(0.45)	309	(0.45)
Maximum	gpm (mgd)	481	(0.69)	481	(0.69)
Number of Array Stages Per	NL-		-	0	
	NO.	4	2		2
	NL-	0		0	0
Pressure vessels per Train	NO.	3	52	3	52
Liements per Pressure	No	-	7	7	
2nd Stage	110.			· · · · · · · · · · · · · · · · · · ·	
Pressure Vessels per Train	No	1	6	1	6
Flements per Pressure			•	·	•
Vessel	No.	7	7	-	7
Number of Elements					
Per Train	No.	33	36	3	36
Total (In-Service)	No.	1,6	680	3,3	360
Membrane Area					
Per Element	sq. ft.	4(00	40	00
Per Train	sq. ft.	134	,400	134	,400
Total (In-service)	sq. ft.	672	,000	1,344	4,000
Note: (1) Flux is balanced between the RO	stages using an in	terstage boo	ster pumps.		

Figure 4.9 Two Stage Brackish RO Train

As shown in Table 4.6, flux balance between the first and second stage of the RO train is controlled using an interstage booster pump. Interstage boost pumps deliver pressure to the feed of the second stage to maintain a second stage permeate flowrate. The piping is configured on the RO trains to allow for operation of the system with the interstage boost pump out of service. Performance projections for the RO system design considered herein are presented in Appendix C.

Table 4.7 RO Train Interstage Booster Pumps					
Description	Units	10,000 AFY	20,000 AFY		
Type: Inline Vertical Centrifugal					
Booster Pumps Per RO Train	No.	1	1		
Pump Data					
Stages	No.	1	1		
Flow					
At 72 Percent RO Recovery	gpm	888	888		
At 80 Percent RO Recovery	gpm	720	655		
Total Dynamic Head at 72 Percent Recovery	ft	461	461		
Total Dynamic Head at 80 Percent Recovery	ft	461	461		
Motor Size					
Pump Efficiency	percent	70	70		
Worst Case BHP	hp	148	148		
Motor hp (per Pump)	hp	200	200		
Drive	type	VFD	VFD		

Preliminary design criteria for the inter-stage booster pumps is shown in Table 4.7.

4.3.6 Membrane CIP System

The CIP system is used to chemically clean and remove foulants (e.g., particles, mineral scale, and biology) from the RO membranes. Foulants result in additional headloss and increased energy requirements to maintain production flow rates. Additionally, foulants may result in a deterioration of permeate water quality.

The CIP system circulates cleaning chemicals to the RO membrane trains. The CIP system is permanently connected to the membrane skid piping in order to avoid the labor, time, and safety issues involved in connecting and disconnecting hoses or pipe spools. CIP connections to the permeate side of the RO membrane will have block valves and removable spool pieces to insure that the treated water is isolated from the cleaning solution while in service.

Each stage on the membrane train is cleaned separately to deliver the required cleaning flow velocities to each pressure vessel in the array.

Preliminary design criteria for the CIP system are shown in Table 4.8. A photo of a typical CIP system is presented in Figure 4.10.

Table 4.8 Reverse Osmosis Clean-in-Place System Design Criteria			
Description	Units	Both Options	
Pressure Vessel Cleaning Flow Rate			
Stage 1 (Flow Per Vessel)	gpm	45	
Vessels Cleaned Per Cycle	No.	32	
Stage 1 Cleaning Flowrate	gpm	1,440	
Stage 2 (Flow Per Vessel)	gpm	45	
Vessels Cleaned Per Cycle	No.	16	
Stage 2 Cleaning Flowrate	gpm	720	
CIP Chemical Tank			
Number	No.	2	
Volume (Each)	gallons	4,500 (nominal)	
Tank Heater	·		
Type: Immersion			
Number of Units Per Tank	No.	2	
Size			
Each	kW	100	
Total	kW	400	
CIP Recirculation Pump			
Type: FRP End Suction Centrifugal			
Number	No.	1	
Flow	gpm	1,440	
трн	ft H₂O (psig)	170	
Motor Load	hn	125	
Drive		VFD	
Cartridge Filter			
Vessel Orientation: Vertical			
Cartridge Filter Type: Melt Blown			
Cartridge Filter Material: Polypropylene			
Cartridge Filter End Connection: Single			
Open End, Double O-Ring			
Cartridge Filter Rating	micron	5	
Cartridge Filter Length	inches	40	
Cartridge Filter Loading Rate			
At Maximum Flowrate	gpm/10-inch	4.19	
At Minimum Flowrate	gpm/10-inch	2.09	
Maximum Pressure Drop			
Clean Filter	psig	3	
Dirty Filter	psig	15	
Cartridge Filters per Vessel	No.	86	

Figure 4.10 Typical CIP System

4.3.7 RO Permeate Chemical Conditioning

RO permeate does not meet the water quality objective for effluent pH and alkalinity without chemical conditioning. Typical practice for municipal drinking water RO facilities is addition of sodium hydroxide (caustic soda); however, for the proposed irrigation usage this has the detrimental effect of raising the sodium level resulting in a higher sodium adsorption ratio (SAR).⁶ Further, the use of caustic soda does not add calcium, which is useful, in conjunction with pH and alkalinity, to protecting distribution system piping. The proposed chemical conditioning for the South Oxnard Plain desalter is the addition of hydrated lime (as a 35 percent slurry). The advantage of adding lime is that there is no increase in sodium and the addition of calcium ions will reduce the SAR as well as increase the calcium carbonate precipitation potential (CCPP), which helps protect distribution system piping.

Chlorine, provided as sodium hypochlorite, is also added to the permeate to prevent biological growth in the distribution system. Additionally, the addition of chlorine will oxidize low levels of hydrogen sulfide. Based on information provided by UWCD, hydrogen sulfide levels in the shallow aquifer targeted for this facility are low. Therefore, for the purposes of this study, hydrogen sulfide levels are assumed to be less than 0.5 mg/L and will be managed by oxidation with chlorine in the permeate.

Preliminary design criteria for RO permeate lime and sodium hypochlorite feed systems are shown in Table 4.9 and 4.10, respectively.

⁶ SAR =
$$\frac{Na}{\sqrt{\frac{1}{2}(Ca+Mg)}}$$

where sodium, calcium, and magnesium are expressed in meq/L. In general, the lower the SAR, the more suitable the water is for irrigation.

Table 4.9 Lime Slurry Design Criteria					
Lime Characteristics					
Lime Purity	%	97%			
Dry Lime Bulk Density (Storage Value)	lb/cu ft	30			
Concentration:	%	35 %			
Specific Gravity:		1.271			
Solution Strength:	lb/gal	3.70			
		10,0	00 AFY	20,00	00 AFY
Parameters	Units	Design	Maximum	Design	Maximum
Post Treatment					
Chemical Usage					
Location: After RO Flush Tank					
Process Flow	mgd	8.9	8.9	17.80	17.80
Chemical Dose	mg/L	58	73	58	73
Chemical Dose (as stored weight)	mg/L	60	75	60	75
Chemical Usage	lb/day	4,441	5,589	8,882	11,179
Chemical Feed Rate	gpd	1,199	1,509	2,398	3,018
Chemical Feed Rate	gph	50.0	62.9	99.9	125.8
Number of Duty Metering Pumps	No.	1.0	1.0	2.0	2.0
Number of Standby Metering Pumps	No.	1.0	1.0	1.0	1.0
Chemical Feed Rate Per Pump	gph	50.0	62.9	50.0	62.9
Lime Storage Silos					
Number of Silos	No.	1		1	
Silo Capacity, each	cu ft	2,250		4,500	
Silo Capacity, each	lbs	67,500		135,000	
Silo Capacity, total	Tons	33.75		67.5	
Silo Diameter, each	ft	14		14	
Silo Sideshell Height, each	ft	15		30	
Dry Usage	lbs/day	4,441		8,882	
Dry Usage	tons/day	2.2		4.4	

41

Table 4.9 Lime Slurry Design Criteria					
		10,00	00 AF/yr	20,00	0 AF/yr
Parameters	Units	Design	Maximum	Design	Maximum
Storage Time	days	15		15	
Delivery Truck Full Load	tons	24		24	
Time Between Delivery	days	10.8		5.4	
Lime Slurry Storage					
Number of Tanks	No.	1		1	
Tank Capacity, each	gal	9,000		9,000	
Tank Capacity, total	gal	9,000		9,000	
Total Usage	gal/day	1,199		2,398	
Storage Time	days	7.5		3.8	
Delivery Truck Full Load	gal	4,000		4,000	
Time Between Delivery	days	3.34		1.67	

August 2014

Table 4.10 Sodium Hypochlorite Design Criter	ia		
Sodium Hypochlorite Characteristics			
Concentration:	10.5 %		
Specific Gravity:	1.15		
Solution Strength:	1.01		
Parameters	Units	Design	Design
Post Treatment			
Chemical Usage			
Location: After RO Flush Tank			
Process Flow	mgd	8.9	17.8
Chemical Dose	mg/L	5.0	5.0
Chemical Usage	lb/day	371	743
Chemical Feed Rate	gpd	369	739
Chemical Feed Rate	gph	15.4	30.8
No. of Standby Pumps		1	1
No. of Pumps in Service		1	2
Chemical Feed Rate Per Pump	gph	15.4	15.4
Chemical Feed Rate Per Pump	gpm	0.26	0.26
Bulk Storage Tanks			
Number of Tanks	No.	1	1
Tank Capacity, each	gal	5,500	11,000
Tank Capacity, total	gal	5,500	11,000
Total Usage	gal/day	369	739
Storage Time	days	15	15
Delivery Truck Full Load	gal	3,000	3,000
Time Between Delivery	days	8	4

4.3.8 RO Flush Tank

For higher TDS RO systems such as this, shutdown flushing using treated RO permeate is typical to prevent chloride corrosion of stainless steel piping and valves. Permeate storage must be free from chlorine and must also remain "fresh." Therefore, permeate storage is configured as a flow- through tank that is fed at the bottom and overflows to the ground storage tank. In between the permeate storage tank and the ground storage tank, lime and sodium hypochlorite are added to stabilize and disinfect the product water. This arrangement prevents the chlorinated water from being introduced in the RO systems during flushing or CIP makeup, and continuously turns over the tank volume to keep the water from stagnating.

Table 4.11 RO Flush Tank			
Description	Units	10,000 AFY	20,000 AFY
Product Water Storage			
Type: Circular, Above-ground, Fl	RP		
Number of Tanks	No.	1	
Tank Dimensions			
Depth	ft	40)
Diameter	ft	14	1
Volume	gallons	38,0	000

Preliminary design criteria for RO flush tank are shown in Table 4.11.

4.3.9 Product Water Storage and Pumps

Above ground storage can be constructed using an economical bolted steel tank with glasslined panels that are low maintenance. Can mounted vertical turbine product water pumps are proposed to transfer water from the ground storage tank to the PTP and PVCWD systems. Vertical turbine pumps have higher efficiency than split case or other types of surface mounted pumps and have steeper performance curves that respond well on variable speed drives.

Figures 4.11 and 4.12 present a glass lined storage tank and can mounted vertical turbine product water pump station, respectively. Preliminary design criteria for the on-site product water storage and pumps are shown in Table 4.12.

Table 4.12 Product Water Storage Tank and Pump Station Criteria						
De	scription	Units	10,000) AF/yr	20,000	AF/yr
Product Wate	r Pumps					
Type: Vertical	I Turbine in Closed Bott	om Cans				
Number of Pu	imps					
In-Service		No.		2		1
Reliability		No.		1	1	
Total		No.		3	5	5
Capacity						
Per Pump		gpm (mgd)	3,088	(4.45)	3,088	(4.45)
Firm (One I	Pump Out of	(N				
Service)		gpm (mgd)	6,177	(8.90)	12,353	(17.80)
Total		gpm (mgd)	9,265	(13.35)	15,442	(22.25)
Total Dynamie (TDH) ¹	c Head Required	feet	16	165 135		35
Motor Size						
Pump Effici	ency	percent	8	0	80	
Required B	HP	hp	16	61	132	
Selected		hp	20	00	200	
Drive		type	VI	-D	VFD	
Product Wate	r Storage					
Type: Circular	r, Above-ground, Glass	-lined, Steel Bolt-u	up Tank			
Number of Ta	inks	No.		1	1	
Tank Dimensi	ions (Each) ²					
Depth		ft	2	7	27	
Diameter		ft	1 [.]	12	15	59
Area		sq ft	9,8	352	19,8	856
Volume						
Each		gallons	1,990	0,000	4,010	0,000
Total		gallons	1,990	0,000	4,010	0,000
Storage Time	at Design Flow	hours	5	.4	5.	4
Storage as Pe	ercent of Daily Flow	percent	22 23		3	
Notes:						
(1) Using 24-ir capacity.	nch diameter pipe for 10,0	00 AFY capacity ar	nd 36-inch di	ameter pipe	e for 20,000) AFY

(2) Using Manufacturer's standard dimensions.

Figure 4.11 Typical Glass Lined Ground Storage Tank (Photo adapted from CST Industries website - <u>http://www.cstindustries.com/products/aquastore</u>)

Figure 4.12 Can-Mounted Vertical Turbine Product Water Pump Station

4.4 Site Layouts

Preliminary site layouts for the 10,000 AFY desalter facility are presented in Figures 4.13 through 4.17. Preliminary site layouts for the 20,000 AFY desalter facility are presented in Figures 4.18 through 4.22. The site layouts show all of the major process components for both the 10,000 AFY and 20,000 AFY scenarios. The primary purpose of the preliminary site layouts is to provide conceptual arrangements that furnish guidance on area requirements for the proposed desalter facility.

5.0 COSTS AND CONCLUSIONS

Estimated capital costs were developed using a combination of vendor quotes, recently bid projects, and unit cost assumptions. Carollo has recently been involved with several Southern California projects of similar scope, including:

- Chino II Desalter Expansion
- Mesa Water Reliability Facility
- Irvine Ranch Water District Well 21/22 Desalter

Costs for RO equipment, chemical feed systems, and other ancillary systems were derived from the bids for these projects.

The layouts presented in Section 4 were used to estimate building costs. Different unit costs were used for each area to reflect the level of complexity of the defined space. For example, a covered chemical storage area has a lower unit cost than administrative areas because there are limited HVAC and building mechanical requirements and no interior finishing requirements, such as drywall, paint, specialized flooring, etc. The building classifications were divided into the following categories:

- Main process areas
- Covered chemical storage areas
- Non-process areas
 - Administrative
 - Electrical Room
 - Control Room
 - Laboratory
 - Shop/Storage Area

Figure 4.13 10,000 AFY RO Facility – Site Plan

Figure 4.14 10,000 AFY RO Facility – Isometric View Looking Northwest

Figure 4.15 10,000 AFY RO Facility – Sand Separators, Cartridge Filters, and RO Systems

Figure 4.16 10,000 AFY RO Facility – Chemical Storage, RO Flush Tank, and Product Water Storage

Figure 4.17 10,000 AFY RO Facility – Product Water Pumps, Admin/Storage/Lab/Control/Electrical Rooms

Figure 4.18 20,000 AFY RO Facility – Site Plan

Figure 4.19 20,000 AFY RO Facility – Isometric View Looking Northwest

Figure 4.20 20,000 AFY RO Facility – Sand Separators, Cartridge Filters, and RO Systems

Figure 4.21 20,000 AFY RO Facility – Chemical Storage, RO Flush Tank, and Product Water Storage

Figure 4.22 20,000 AFY RO Facility – Product Water Pumps, Admin/Storage/Lab/Control/Electrical Rooms

Unit costs were applied to known quantities, such as building square footage and gallons per day of capacity. Process equipment unit costs were based on vendor quotes and historical data from past projects. Detailed breakdowns of the capital costs for the water treatment plant and pipelines are presented in Appendix D.

5.1.1 <u>SMP Connections</u>

Connections to the SMP are allowed through existing blowoff branches incorporated into the pipeline design, per correspondence with Kristine McCaffrey, CMWD Manager of Engineering. As shown in Figure 5.1, a 24" blowoff connection is available at Station 106+70.00 at the intersection of Hueneme Road and Edison Drive.

Figure 5.1 Potential Connection Point to SMP

Discharge stations are designed and constructed by CMWD at an estimated cost, provided by CMWD, of approximately \$300,000. The typical discharge station design is presented in Figure 5.2.

Figure 5.2 Typical SMP Discharge Flow Measurement Station

5.2 Operation and Maintenance (O&M) Costs

Operations costs were based on assumptions for:

- Power
- Chemicals
- Cartridge Filters
- Membranes
- Concentrate Disposal

- Water Quality Sampling and Analysis
- Miscellaneous Repair
- Miscellaneous Power (Lights, Air Conditioning, etc.)
- Labor

Chemical usage and power consumption were developed using data from manufacturers' projection software, water chemistry modeling, and hydraulic modeling using selected pump curves and required flow and pressure conditions for each capacity and water quality. For example, RO cleaning intervals and cleaning chemical costs were developed based on the Arlington Desalter in Southern California. Chemical costs were based on information in the *Chino Phase III Expansion Financial Projections Update* (Carollo Engineers, August 2012).

5.2.1 SMP Disposal Costs

Based on information provided by CMWD, disposal costs into the brine line are dependent upon the areas served by the water produced. For water distribution within the service area, concentrate disposal costs are \$500/AF. Because the SMP is subsidized by potable water rates, lower disposal rates apply to those discharges that are producing and distributing potable water. Outside of the service area, including the agriculture users to be served by the South Oxnard Plain desalter via the PTP and PVCWD, cost for use of the brine line is \$750/AF. Estimated brine flows are presented in Table 3.2.

5.2.2 O&M Estimate Unit Cost Assumptions

The assumed costs used in developing O&M Costs are presented in Table 5.1. Detailed breakdowns of the O&M costs are presented in Appendix E.

Table 5.1 Operation and Maintenance Cost Assumptions	
Chemicals	
Hydrated Lime (\$/lb):	\$0.20
Sulfuric Acid (\$/lb):	\$0.034
Scale Inhibitor (\$/lb):	\$0.95
Sodium Hypochlorite (\$/lb):	\$0.35
Membranes and Filters	
Membrane Elements - 8 inch diameter(\$/element):	\$500
Cartridge Filters (\$/filter):	\$12.00
Chemical Cleanings	
Step 1 Cleaning Chemical Cost (\$/lb):	\$2.82
Step 2 Cleaning Chemical Cost (\$/lb):	\$3.16
Step 3 Cleaning Chemical Cost (\$/lb):	\$2.00
Other Non- Labor Costs	
Power (\$/kWh):	\$0.125
Miscellaneous Equipment and Building Maintenance (\$/yr):	\$50,000
Well Maintenance (% of capital cost):	2%
Laboratory Sample Analysis (\$/yr):	\$150,000
Percentage Adder for Miscellaneous Power (%):	2%
SMP Discharge (\$/AF):	750
Annual SMP Discharge Station Maintenance and Sampling (\$/yr):	\$45,000
Labor	
Annual T2 Operator Salary (\$/yr):	\$72,696
Annual T1 Operator Salary (\$/yr):	\$59,821
Fringe Percentage (%):	40%
Administrative Cost Percentage (%):	55%
Plant Operating Factor (% of Time in Operation)	98%

5.3 Cost Summary

Table 5.2 summarizes the capital and operational costs for each option. Capital costs presented herein represent a Class 4 budget estimate, as defined by the AACEI's Revised Classification (1999), with an expected accuracy range of +30 percent or -15 percent. This cost estimate is based upon Carollo Engineers' perception of current conditions in the project area and is subject to change as variances in the cost of labor, materials, equipment, services provided in the project area occur. A detailed summary of the capital cost estimate is presented in Appendix F.

The unit water cost was developed by amortizing the capital costs across a 30-year period at a 3.22 percent interest rate (term and rate provided by UWCD). The annual capital repayment was then added to the annual operation and maintenance costs. The combination of the amortized capital and operations costs constitutes the annualized costs for each alternative.

Since operating costs are sensitive to power costs, a power cost sensitivity analysis was performed for each scenario. The impact to the O&M costs was assessed between \$0.07 and \$0.15 per kWh. The results are presented in Figures 5.3 through 5.6.

Figure 5.3 O&M Cost Sensitivity to Power Costs – Design Raw Water at 10,000 AFY

Figure 5.4 O&M Cost Sensitivity to Power Costs – Design Raw Water at 20,000 AFY

Figure 5.5 O&M Cost Sensitivity to Power Costs – Worst Raw Water at 10,000 AFY

Figure 5.6 O&M Cost Sensitivity to Power Costs – Worst Raw Water at 20,000 AFY

5.4 Conclusions

The following conclusions are based on the information provided by UWCD and CMWD, and the process selection, design criteria development, and cost information generated by Carollo:

- The impaired groundwater in the South Oxnard Plain is suitable for treatment by reverse osmosis at an acceptable recovery range of 72 to 80 percent.
- With the exception of pH, the "ideal" product water quality can be met with traditional pretreatment, desalination, and post treatment systems.
- An amortized water cost of \$998 to \$1,111 per AF for the design water condition is competitive with imported water and has superior quality.
- Utilizing impaired groundwater treated to low TDS levels reduces salt import into the region, unlike irrigation with imported water.
- Connection to the SMP at the intersection of Hueneme Road and Edison Avenue is a viable option for concentrate disposal.
- Additional water quality sampling should be performed to confirm that the RO concentrate will comply with the SMP NPDES permit discharge limits.

Table 5.2	Cost Summary				
		10,000 AFY Design Water Quality	10,000 AFY Worst Case Water Quality	20,000 AFY Design Water Quality	20,000 AFY Worst Case Water Quality
Capital Cos	ts				
	Conceptual WTP Construction Cost Estimate (\$):	\$85,137,000	\$85,137,000	\$147,966,000	\$147,966,000
Operation and Maintenance Costs					
	Annual O&M Cost (\$/yr):	\$6,383,700	\$8,021,500	\$11,737,900	\$14,316,200
	Annual O&M Cost (\$/kgal):	\$2.01	\$2.52	\$1.84	\$2.2.25
	Annual O&M Cost (\$/AF):	\$653	\$821	\$601	\$733
Annualized Costs					
	Annual O&M Cost with Capital Recovery (\$/yr):	\$10,850,700	\$12,489,500	\$19,503,300	\$22,081,600
	Annual O&M Cost with Capital Recovery (\$/kgal):	\$3.41	\$3.92	\$3.06	\$3.47
	Annual O&M Cost with Capital Recovery (\$/AF):	\$1,111	\$1,278	\$998	\$1,130

August 2014

5.5 Future Project Development Activities

In order to advance the desalter project beyond the feasibility level toward design and construction, several additional preliminary steps must be taken that are outside the scope of this feasibility study. These steps include:

- Well Sampling UWCD should initiate the well sampling plan recommended in Section 3.5.1. This information will increase the water quality database to refine the process design and insure that SMP regulated contaminants are not problematic for concentrate disposal.
- Finalize GMA Agreements UWCD has initiated conversations with the GMA regarding the utilization of the impaired groundwater and the exemption from groundwater pumping surcharges. A formal groundwater usage agreement should be finalized between the GMA and UWCD.
- Finalize Sites for Wells Figure 3.1 presents approximate well sites based on information provided by UWCD. The well sites should be finalized, and the ability to acquire the property should be confirmed.
- Finalize Plant Site Figure 3.1 identifies a potential location for the desalter. MWD is the owner of the parcel shown, and has earmarked that property for a future desalter. The availability of this land for use as the desalter site should be coordinated with MWD, and a finalized use agreement or property acquisition plan should be developed.
- Electrical Infrastructure Investigation As part of the feasibility study, the capability of the SCE grid to support the desalter and wells has been confirmed. However, specifics regarding modifications and the capital cost implications have not been developed to a detailed design level. Therefore, a large load study should be performed by SCE to establish infrastructure improvements requirements for power supply to the wells and the desalter
- Pipeline Routing Once the well and plant sites are selected, the pipeline routing should be finalized, including a right of way acquisition study.
- CEQA Once the previous items have been finalized, an environmental impact study should be conducted in accordance with CEQA guidelines. An initial study will determine if the potential environmental effects require a more substantial Environmental Impact Report (EIR). The feasibility report will need to be amended with any information necessary to support the CEQA study.
- Survey and Geotechnical Investigation In support of the pipeline, well, and desalter facility designs, survey and geotechnical information should be developed.

- Pipelines Aerial surveys at 1-ft contours overlaid on the aerial photos should be developed. Geotechnical borings at 1000-ft intervals along the pipeline alignment should be conducted.
- Wells and Desalter Detailed site surveys for the proposed sites. Geotechnical investigations should be performed on each well site and the desalter site, complete with foundation design recommendations.

Technical Memorandum No. 1

APPENDIX A – HYDRAULIC MODELING RESULTS

Fathom 8 (Output) 5/30/2014 Page 2		
CAROLLO\byallaly		
General		
Title: AFT Fathom Model Analysis run on: 5/30/2014 4:33:36 PM Application version: AFT Fathom Version 8 (201 Input File: C:\Users\byallaly\Desktop\UWCD Ra Scenario: Base Scenario/10,000 AFY_Design W Output File: C:\Users\byallaly\Desktop\UWCD F	3.10.24) w and Product Water Pumping.fth Vater Raw and Product Water Pumping_1.out	
Execution Time= 0.38 seconds Total Number Of Head/Pressure Iterations= 0 Total Number Of Flow Iterations= 2 Total Number Of Temperature Iterations= 0 Number Of Pipes= 95 Number Of Junctions= 93		
Matrix Method= Gaussian Elimination	nae	
Flow Rate Tolerance= 0.0001 relative change Temperature Tolerance= 0.0001 relative change Flow Relaxation= (Automatic) Pressure Relaxation= (Automatic)	9	
Constant Fluid Property Model Fluid Database: AFT Standard Fluid: Water at 1 atm Max Fluid Temperature Data= 212 deg. F Min Fluid Temperature Data= 32 deg. F Temperature= 22 deg. C Density= 62.29622 lbm/ft3 Viscosity= 2.30822 lbm/hr-ft Vapor Pressure= 0.38264 psia Viscosity Model= Newtonian Apply laminar and non-Newtonian correction to: Polynomials Corrections applied to the following junctions: B Wye, Control Valve, Spray Discharge, Relief Val	: Pipe Fittings & Losses, Junction K factor Branch, Reservoir, Assigned Flow, Assigne	s, Junction Special Losses, Junction ed Pressure, Area Change, Bend, Tee or
Ambient Pressure (constant)= 1 atm Gravitational Acceleration= 1 g Turbulent Flow Above Reynolds Number= 4000 Laminar Flow Below Reynolds Number= 2300 Total Inflow= 13,898 gal/min Total Outflow= 13,898 gal/min Maximum Static Pressure is 91.50 psia at Pipe 3 Minimum Static Pressure is 14.67 psia at Pipe 1 Fixed Energy Cost = 0.0125 U.S. Dollars per kW The following cost databases were used: Total of All Model Costs = 0 U.S. Dollars	33 Inlet 04 Inlet V-hr	

Fathom 8 (Output) 5/30/2014 Page 3 CAROLLO\byallaly	

<u>Warnings</u>

No Warnings

Fathom 8 (Output) 5/30/2014 Page 4 CAROLLO\byallaly	

Pump Summary

Jct	Name	Vol. Flow (gal/min)	dH (feet)	Overall Efficiency (Percent)	Speed (Percent)	Overall Power (hp)	NPSHA (feet)	NPSHR (feet)	Energy Cost (U.S. Dollars)
25	Well No. 1	1,931	225.6	100.0	N/A	109.93	39.08	N/A	0
31	Well No. 2	1,931	199.6	100.0	N/A	97.26	40.08	N/A	0
37	Well No. 3	1,931	188.4	100.0	N/A	91.78	40.08	N/A	0
X43	Well No. 4	0	N/A	N/A	0	N/A	N/A	N/A	0
X48	Well No. 5	0	N/A	N/A	0	N/A	N/A	N/A	0
55	Well No. 6	1,931	194.2	100.0	N/A	94.60	42.08	N/A	0
X62	Well No. 7	0	N/A	N/A	0	N/A	N/A	N/A	0
X67	Well No. 8	0	N/A	N/A	0	N/A	N/A	N/A	0
X72	Well No. 9	0	N/A	N/A	0	N/A	N/A	N/A	0
X77	Well No. 10	0	N/A	N/A	0	N/A	N/A	N/A	0
X82	Well No. 11	0	N/A	N/A	0	N/A	N/A	N/A	0
X87	Well No. 12	0	N/A	N/A	0	N/A	N/A	N/A	0
97	Pump	3,087	154.5	100.0	N/A	120.38	40.17	N/A	0
100	Pump	3,087	155.0	100.0	N/A	120.71	40.14	N/A	0
X103	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0
X107	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0
X110	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0

Fathom 8 (Output) 5/30/2014 Page 5 CAROLLO\byallaly	

Valve Summary

Jct	Name	Valve Type	Vol. Flow (gal/min)	dH (feet)	P Static In (psia)	Cv	К	Valve State
27	Valve	REGULAR	1,931	0.6831	86.65	3,550	0.8328	Open
33	Valve	REGULAR	1,931	0.6831	75.83	3,550	0.8328	Open
39	Valve	REGULAR	1,931	0.6831	70.96	3,550	0.8328	Open
45	Valve	REGULAR	0	N/A	66.01	N/A	N/A	Open
50	Valve	REGULAR	0	N/A	66.70	N/A	N/A	Open
57	Valve	REGULAR	1,931	0.6831	74.33	3,550	0.8328	Open
64	Valve	REGULAR	0	N/A	65.56	N/A	N/A	Open
69	Valve	REGULAR	0	N/A	66.86	N/A	N/A	Open
74	Valve	REGULAR	0	N/A	66.43	N/A	N/A	Open
79	Valve	REGULAR	0	N/A	68.16	N/A	N/A	Open
84	Valve	REGULAR	0	N/A	66.86	N/A	N/A	Open
89	Valve	REGULAR	0	N/A	66.86	N/A	N/A	Open
26	Check Valve	CHECK	1,931	0.3842	86.84	4,733	0.4684	Open
32	Check Valve	CHECK	1,931	0.3842	76.03	4,733	0.4684	Open
38	Check Valve	CHECK	1,931	0.3842	71.15	4,733	0.4684	Open
44	Check Valve	CHECK	0	N/A	66.01	N/A	N/A	Open
49	Check Valve	CHECK	0	N/A	66.70	N/A	N/A	Open
56	Check Valve	CHECK	1,931	0.3842	74.52	4,733	0.4684	Open
63	Check Valve	CHECK	0	N/A	65.56	N/A	N/A	Open
68	Check Valve	CHECK	0	N/A	66.86	N/A	N/A	Open
73	Check Valve	CHECK	0	N/A	66.43	N/A	N/A	Open
78	Check Valve	CHECK	0	N/A	68.16	N/A	N/A	Open
83	Check Valve	CHECK	0	N/A	66.86	N/A	N/A	Open
88	Check Valve	CHECK	0	N/A	66.86	N/A	N/A	Open

Fathom 8 (Output) 5/30/2014 Page 6 CAROLLO\byallaly	

Reservoir Summary

Jct	Name	Туре	Liq. Height (feet)	Liq. Elevation (feet)	Surface Pressure (psia)	Liquid Volume (feet3)	Liquid Mass (Ibm)	Net Vol. Flow (gal/min)	Net Mass Flow (Ibm/sec)
24	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
30	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
36	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
42	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
47	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
54	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
61	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
66	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
71	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
76	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
81	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
86	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
96	Reservoir	Infinite	N/A	20.00	14.70	N/A	N/A	-6,174	-856.9

Fathom 8 (Output) 5/30/2014 Page 7 CAROLLO\byallaly	

Pipe Output Table

Dino	Name	Vol. Flow Rate	Velocity	dH
Fipe		(MGD)	(feet/sec)	(feet)
4	Pipe	8.891	4.3786	44.8662936
X5	Pipe	0.000	0.0000	0.0000000
6	Pipe	8.891	4.3786	20.6001902
29	Pipe	2.781	7.2650	0.0012805
30	Pipe	2.781	7.2650	1.0397569
31	Pipe	2.781	7.2650	0.0640244
32	Pipe	2.781	7.2650	0.1920731
33	Well 1 to Well 2 - 12" HDPE DR13.5	2.781	6.8286	27.0354544
34	Pipe	2.781	7.2650	0.0012805
35	Pipe	2.781	7.2650	1.0397569
36	Pipe	2.781	7.2650	0.0640244
37	Pipe	2.781	7.2650	0.1920731
38	Pipe	2.781	6.8286	0.7560194
39	Well 2 to Well 3 - 20" HDPE DR13.5	5.561	5.5499	11.3071764
40	Pipe	2.781	7.2650	0.0012805
41	Pipe	2.781	7.2650	1.0397569
42	Pipe	2.781	7.2650	0.0640244
43	Pipe	2.781	7.2650	0.1920731
44	Pipe	2.781	6.8286	0.7560196
45	Pipe	0.000	0.0000	0.0000000
46	Pipe	0.000	0.0000	0.0000000
47	Pipe	0.000	0.0000	0.0000000
48	Pipe	0.000	0.0000	0.0000000
49	Pipe	0.000	0.0000	0.0000000
50	Well 3 to Well 4 - 24" HDPE DR13.5	8.342	5.7817	9.8380571
51	Pipe	0.000	0.0000	0.0000000
52	Pipe	0.000	0.0000	0.0000000
53	Pipe	0.000	0.0000	0.0000000
54	Pipe	0.000	0.0000	0.0000000
55	Pipe	0.000	0.0000	0.0000000
56	Well 4 to Well 5/6 Blend - 30" HDPE DR13.5	8.342	3.7002	1.6723998
57	Pipe	2.781	7.2650	0.0012807
58	Pipe	2.781	7.2650	1.0397569
59	Pipe	2.781	7.2650	0.0640244
60	Pipe	2.781	7.2650	0.1920731
61	Pipe	2.781	6.8286	0.7560153
62	Well 6 to Well 5 - 12" HDPE DR13.5	2.781	6.8286	17.6770025

	Fathom 8 (Output) 5/30/2014 Page 8 CAROLLO\byallaly				
Pipe	Name		Vol. Flow Rate	Velocity	dH (foot)
		10.5	(INGD)	(1000/300)	
63	Well 11 to Well 9 Blend - 20" HDPE DR	13.5	2.781	2.2176	0.3103212
64	North Wells to Desalter - 36" HDPE DR	13.5	0.000	3.4261	1.2160755
66	Pipe		0.000	0.0000	0.0000000
67	Pipe		0.000	0.0000	0.0000000
68			0.000	0.0000	0.0000000
70	Pine		0.000	0.0000	0.0000000
70			0.000	0.0000	0.0000000
72	Pine		0.000	0.0000	0.0000000
72	Pine		0.000	0.0000	0.0000000
75	Pine		0.000	0.0000	0.0000000
76	Pine		0.000	0.0000	0.0000000
70	Pine		0.000	0.0000	0.0000000
78	Pine		0.000	0.0000	0.0000000
70	Pine		0.000	0.0000	0.0000000
80	Pine		0.000	0.0000	0.0000000
81			0.000	0.0000	0.0000000
82			0.000	0.0000	0.0000000
83			0.000	0.0000	0.0000000
84	Pine		0.000	0.0000	0.0000000
85	Pine		0.000	0.0000	0.0000000
86			0.000	0.0000	0.0000000
87			0.000	0.0000	0.0000000
07	Pipe		0.000	0.0000	0.0000000
80			0.000	0.0000	0.0000000
09			0.000	0.0000	0.0000000
90			0.000	0.0000	0.0000000
91			0.000	0.0000	0.0000000
92			0.000	0.0000	0.0000000
93			0.000	0.0000	0.0000000
94			0.000	0.0000	0.0000000
95	Well 7/8 to Well 9 - 20" HDPE DR13.5		0.000	0.0000	0.0000000
96	Well 9 to Well 10 - 24" HDPE DR13.5		0.000	0.0000	0.0000000
98	Well 12 to Desalter - 36" HDPE DR13.5) 	0.000	0.0000	0.0000000
100	Well 10/11 to Well 12 - 36" HDPE DR13	3.5	0.000	0.0000	0.0000000
101	Well 7 to Well 8 Blend - 12" HDPE DR1	3.5	0.000	0.0000	0.0000000
102	Well 7 to Well 8 Blend - 12" HDPE DR1	3.5	0.000	0.0000	0.0000000
103	Well 10 to Well 11 - 30" HDPE DR13.5		0.000	0.0000	0.0000000
104	Pipe		8.891	1.9460	0.2057422
105	Pipe		4.445	3.8921	0.3487453
106	Pipe		4.445	4.9259	1.1992354

				T
	Fathom 8 (Output) 5/30/2014 Page 9 CAROLLO\byallaly			
	Name	Vol.	Velocity	dH
Pipe		(MGD)	(feet/sec)	(feet)
107	Pipe	0.000	0.0000	0.0000000
108	Ріре	4.445	0.9730	0.0009715
109	Ріре	4.445	3.8921	0.3487453
110	Ріре	4.445	4.9259	1.1992354
111	Ріре	4.445	0.9730	0.0009715
112	Ріре	0.000	0.0000	0.0000000
113	Ріре	0.000	0.0000	0.0000000
114	Pipe	0.000	0.0000	0.0000000
115	Ріре	8.891	1.9460	0.0035070
116	Pipe	0.000	0.0000	0.0000000
117	Ріре	0.000	0.0000	0.0000000
118	Ріре	0.000	0.0000	0.0000000
119	Ріре	0.000	0.0000	0.0000000
120	Ріре	8.891	1.9460	0.0035069
121	Ріре	0.000	0.0000	0.0000000
122	Ріре	8.891	1.9460	0.0035069
123	Ріре	0.000	0.0000	0.0000000
124	Pipe	0.000	0.0000	0.0000000

Fathom 8 (Output) 5/30/2014 Page 10 CAROLLO\byallaly	

All Junction Table

Jct	Name	Name Vol. Flow Mass Flow Rate Thru Jct Rate Thru Jct (gal/min) (Ibm/sec)		Loss Factor (K)	dH (feet)	
5	PTP Connection	0	0.0	0.0000	0.0000	
6	PVCWD Connection	6,174	856.9	0.0000	0.0000	
7	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000	
24	Reservoir	1,931	268.0	0.0000	0.0000	
25	Well No. 1	1,931	268.0	0.0000	-225.6302	
26	Check Valve	1,931	268.0	0.4684	0.3842	
27	Valve	1,931	268.0	0.8328	0.6831	
28	Branch	1,931	268.0	0.0000	0.0000	
29	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses	
30	Reservoir	1,931	268.0	0.0000	0.0000	
31	Well No. 2	1,931	268.0	0.0000	-199.6296	
32	Check Valve	1,931	268.0	0.4684	0.3842	
33	Valve	1,931	268.0	0.8328	0.6831	
34	Branch	1,931	268.0	0.0000	0.0000	
35	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses	
36	Reservoir	1,931	268.0	0.0000	0.0000	
37	Well No. 3	1,931	268.0	0.0000	-188.3640	
38	Check Valve	1,931	268.0	0.4684	0.3842	
39	Valve	1,931	268.0	0.8328	0.6831	
40	Branch	1,931	268.0	0.0000	0.0000	
41	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses	
42	Reservoir	0	0.0	0.0000	0.0000	
X43	Well No. 4	0	0.0	0.0000	N/A	
44	Check Valve	0	0.0	0.0000	0.0000	
45	Valve	0	0.0	0.0000	0.0000	
46	Branch	0	0.0	0.0000	0.0000	
47	Reservoir	0	0.0	0.0000	0.0000	
X48	Well No. 5	0	0.0	0.0000	N/A	
49	Check Valve	0	0.0	0.0000	0.0000	
50	Valve	0	0.0	0.0000	0.0000	
51	Branch	0	0.0	0.0000	0.0000	
52	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses	
53	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000	
54	Reservoir	1,931	268.0	0.0000	0.0000	
55	Well No. 6	1,931	268.0	0.0000	-194.1538	
56	Check Valve	1,931	268.0	0.4684	0.3842	
57	Valve	1,931	268.0	0.8328	0.6831	

	Fathom 8 (Output) 5/30/2014 Page 11 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct	Mass Flow Rate Thru Jct	Loss Factor (K)	dH
		(gal/min)	(Ibm/sec)		(feet)
58	Branch	1,931	268.0	0.0000	0.0000
59	Bend	1,931	268.0	0.1908	0.1382
60	Pressure Entering Desalter	N/A	N/A	0.0000	0.0000
61	Reservoir	0	0.0	0.0000	0.0000
X62	Well No. 7	0	0.0	0.0000	N/A
63	Check Valve	0	0.0	0.0000	0.0000
64	Valve	0	0.0	0.0000	0.0000
65	Branch	0	0.0	0.0000	0.0000
66	Reservoir	0	0.0	0.0000	0.0000
X67	Well No. 8	0	0.0	0.0000	N/A
68	Check Valve	0	0.0	0.0000	0.0000
69	Valve	0	0.0	0.0000	0.0000
70	Branch	0	0.0	0.0000	0.0000
71	Reservoir	0	0.0	0.0000	0.0000
X72	Well No. 9	0	0.0	0.0000	N/A
73	Check Valve	0	0.0	0.0000	0.0000
74	Valve	0	0.0	0.0000	0.0000
75	Branch	0	0.0	0.0000	0.0000
76	Reservoir	0	0.0	0.0000	0.0000
X77	Well No. 10	0	0.0	0.0000	N/A
78	Check Valve	0	0.0	0 0000	0 0000
79	Valve	0	0.0	0.0000	0.0000
80	Branch	0	0.0	0.0000	0.0000
Q1	Bosorivoir	0	0.0	0.0000	0.0000
V92	Well No. 11	0	0.0	0.0000	0.0000
02	Chock Valvo	0	0.0	0.0000	N/A
03		0	0.0	0.0000	0.0000
04	Propoh	0	0.0	0.0000	0.0000
65	Diditti	0	0.0	0.0000	0.0000
80		0	0.0	0.0000	0.0000
X87	Well No. 12	0	0.0	0.0000	N/A
88	Check Valve	0	0.0	0.0000	0.0000
89	Valve	0	0.0	0.0000	0.0000
90	Branch	0	0.0	0.0000	0.0000
91	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
92	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
93	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
94	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
95	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
96	Reservoir	6,174	856.9	0.0000	0.0000
97	Pump	3,087	428.5	0.0000	-154.5463

	Fathom 8 (Output) 5/30/2014 Page 12 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
98	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
99	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
100	Pump	3,087	428.5	0.0000	-154.9698
101	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
102	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
X103	Pump	0	0.0	0.0000	N/A
104	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
105	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
106	Dead End	0	0.0	0.0000	0.0000
X107	Pump	0	0.0	0.0000	N/A
108	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
109	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
X110	Pump	0	0.0	0.0000	N/A
111	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
112	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
113	Dead End	0	0.0	0.0000	0.0000

Eathorn 9 (Quitaut)		
5/30/2014		
Page 2		
CAROLLO\byallaly		
<u>General</u>		
Title: AFT Fathom Model		
Analysis run on: 5/30/2014 4:36:08 PM		
Application version: AFT Fathom Version 8 (2	2013.10.24) Development Development Michael Development (M	
Input File: C:\Users\byallaly\Desktop\UVVCD	Raw and Product water Pumping.πn	
Output File: C:\Users\byallah/Desktep\UMC	n water	
	D Naw and Floduct Water Fullping_2.000	
Execution Time= 0.11 seconds		
Total Number Of Head/Pressure Iterations= 0	0	
Total Number Of Flow Iterations= 2		
Total Number Of Temperature Iterations= 0		
Number Of Pipes= 95		
Number Of Junctions= 93		
Matrix Method= Gaussian Elimination		
Pressure/Head Tolerance= 0.0001 relative ch	pange	
Flow Rate Tolerance= 0.0001 relative change	ange a	
Temperature Tolerance= 0.0001 relative char	nae	
Flow Relaxation= (Automatic)		
Pressure Relaxation= (Automatic)		
Constant Fluid Property Model		
Fluid Database: AFT Standard		
Fluid: Water at 1 atm Max Eluid Temperature Data= 212 dag. E		
Min Fluid Temperature Data= 212 deg. F		
Temperature= 22 deg. C		
Density= 62.29622 lbm/ft3		
Viscosity= 2.30822 lbm/hr-ft		
Vapor Pressure= 0.38264 psia		
Viscosity Model= Newtonian		
Apply laminar and non-Newtonian correction	to: Pipe Fittings & Losses, Junction K factor	s, Junction Special Losses, Junction
Polynomials Corrections applied to the following junctions	- Propab Baganyair Assigned Flow Assigns	ad Brassura, Area Change, Band, Teo ar
Wve, Control Valve, Sprav Discharge, Relief	Valve	eu Pressure, Area Change, Benu, Tee or
Ambient Pressure (constant)= 1 atm		
Gravitational Acceleration= 1 g		
Turbulent Flow Above Reynolds Number= 40	000	
Laminar Flow Below Reynolds Number= 2300	0	
l otal Inflow= 27,796 gal/min		
Maximum Static Pressure is 91.50 neis at Din	pe 33 Inlet	
Minimum Static Pressure is 14.59 psia at Pine	e 104 Inlet	
Fixed Energy Cost = 0.0125 U.S. Dollars per	kW-hr	
The following cost databases were used:		
Total of All Model Costs = 0 U.S. Dollars		

Fathom 8 (Output) 5/30/2014 Page 3 CAROLLO\byallaly	

<u>Warnings</u>

No Warnings

Fathom 8 (Output) 5/30/2014 Page 4 CAROLLO\byallaly	

Pump Summary

Jct	Name	Vol. Flow (gal/min)	dH (feet)	Overall Efficiency (Percent)	Speed (Percent)	Overall Power (hp)	NPSHA (feet)	NPSHR (feet)	Energy Cost (U.S. Dollars)
25	Well No. 1	1,931	225.6	100.0	N/A	109.93	39.08	N/A	0
31	Well No. 2	1,931	199.6	100.0	N/A	97.26	40.08	N/A	0
37	Well No. 3	1,931	188.4	100.0	N/A	91.78	40.08	N/A	0
X43	Well No. 4	0	N/A	N/A	0	N/A	N/A	N/A	0
X48	Well No. 5	0	N/A	N/A	0	N/A	N/A	N/A	0
55	Well No. 6	1,931	194.2	100.0	N/A	94.60	42.08	N/A	0
62	Well No. 7	1,931	210.8	100.0	N/A	102.70	42.08	N/A	0
67	Well No. 8	1,931	212.6	100.0	N/A	103.59	45.08	N/A	0
72	Well No. 9	1,931	191.0	100.0	N/A	93.07	44.08	N/A	0
77	Well No. 10	1,931	179.2	100.0	N/A	87.31	48.08	N/A	0
X82	Well No. 11	0	N/A	N/A	0	N/A	N/A	N/A	0
X87	Well No. 12	0	N/A	N/A	0	N/A	N/A	N/A	0
97	Pump	3,087	123.3	100.0	N/A	96.01	39.27	N/A	0
100	Pump	3,087	123.7	100.0	N/A	96.39	39.24	N/A	0
103	Pump	3,087	123.2	100.0	N/A	95.92	39.53	N/A	0
107	Pump	3,087	123.8	100.0	N/A	96.46	39.22	N/A	0
X110	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0

Fathom 8 (Output) 5/30/2014 Page 5 CAROLLO\byallaly	

Valve Summary

Jct	Name	Valve Type	Vol. Flow (gal/min)	dH (feet)	P Static In (psia)	Cv	К	Valve State
27	Valve	REGULAR	1,931	0.6831	86.65	3,550	0.8328	Open
33	Valve	REGULAR	1,931	0.6831	75.83	3,550	0.8328	Open
39	Valve	REGULAR	1,931	0.6831	70.96	3,550	0.8328	Open
45	Valve	REGULAR	0	N/A	66.01	N/A	N/A	Open
50	Valve	REGULAR	0	N/A	66.70	N/A	N/A	Open
57	Valve	REGULAR	1,931	0.6831	74.33	3,550	0.8328	Open
64	Valve	REGULAR	1,931	0.6831	81.53	3,550	0.8328	Open
69	Valve	REGULAR	1,931	0.6831	83.61	3,550	0.8328	Open
74	Valve	REGULAR	1,931	0.6831	73.84	3,550	0.8328	Open
79	Valve	REGULAR	1,931	0.6831	70.45	3,550	0.8328	Open
84	Valve	REGULAR	0	N/A	68.47	N/A	N/A	Open
89	Valve	REGULAR	0	N/A	67.45	N/A	N/A	Open
26	Check Valve	CHECK	1,931	0.3842	86.84	4,733	0.4684	Open
32	Check Valve	CHECK	1,931	0.3842	76.03	4,733	0.4684	Open
38	Check Valve	CHECK	1,931	0.3842	71.15	4,733	0.4684	Open
44	Check Valve	CHECK	0	N/A	66.01	N/A	N/A	Open
49	Check Valve	CHECK	0	N/A	66.70	N/A	N/A	Open
56	Check Valve	CHECK	1,931	0.3842	74.52	4,733	0.4684	Open
63	Check Valve	CHECK	1,931	0.3842	81.72	4,733	0.4684	Open
68	Check Valve	CHECK	1,931	0.3842	83.81	4,733	0.4684	Open
73	Check Valve	CHECK	1,931	0.3842	74.03	4,733	0.4684	Open
78	Check Valve	CHECK	1,931	0.3842	70.65	4,733	0.4684	Open
83	Check Valve	CHECK	0	N/A	68.47	N/A	N/A	Open
88	Check Valve	CHECK	0	N/A	67.45	N/A	N/A	Open

Fathom 8 (Output) 5/30/2014 Page 6 CAROLLO\byallaly	

Reservoir Summary

Jct	Name	Туре	Liq. Height (feet)	Liq. Elevation (feet)	Surface Pressure (psia)	Liquid Volume (feet3)	Liquid Mass (Ibm)	Net Vol. Flow (gal/min)	Net Mass Flow (Ibm/sec)
24	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
30	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
36	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
42	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
47	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
54	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
61	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
66	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
71	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
76	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,931	-268.0
81	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
86	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
96	Reservoir	Infinite	N/A	20.00	14.70	N/A	N/A	-12,348	-1,713.9

Fathom 8 (Output) 5/30/2014 Page 7 CAROLLO\byallaly	

Pipe Output Table

Pipe	Name	Vol. Flow Rate (gal/min)	Velocity	dH (feet)
4	Pine	12 348	3 8921	22 7969367
- - - X5	Pine	12,040	0.0000	0.0000000
6	Pine	12 348	3 8921	10 5273357
29	Pine	1 931	7 2650	0.0012805
30	Pipe	1,001	7 2650	1 0397569
31	Pipe	1,001	7 2650	0.0640244
32	Pine	1 931	7 2650	0 1920731
33	Well 1 to Well 2 - 12" HDPE DB13 5	1,001	6 8286	27 0354544
34		1,001	7 2650	0.0012805
35	Pipe	1 931	7 2650	1 0397569
36	Pipe	1,931	7.2650	0.0640244
37	Pipe	1.931	7.2650	0.1920731
38	Pipe	1.931	6.8286	0.7560194
39	Well 2 to Well 3 - 20" HDPE DR13.5	3.862	5.5499	11.3071764
40	Pipe	1,931	7.2650	0.0012805
41	Pipe	1,931	7.2650	1.0397569
42	Pipe	1,931	7.2650	0.0640244
43	Pipe	1,931	7.2650	0.1920731
44	Pipe	1,931	6.8286	0.7560196
45	Pipe	0	0.0000	0.0000000
46	Pipe	0	0.0000	0.0000000
47	Pipe	0	0.0000	0.0000000
48	Pipe	0	0.0000	0.0000000
49	Pipe	0	0.0000	0.0000000
50	Well 3 to Well 4 - 24" HDPE DR13.5	5,793	5.7817	9.8380571
51	Pipe	0	0.0000	0.0000000
52	Pipe	0	0.0000	0.0000000
53	Pipe	0	0.0000	0.0000000
54	Pipe	0	0.0000	0.0000000
55	Pipe	0	0.0000	0.0000000
56	Well 4 to Well 5/6 Blend - 30" HDPE DR13.5	5,793	3.7002	1.6723998
57	Pipe	1,931	7.2650	0.0012807
58	Pipe	1,931	7.2650	1.0397569
59	Pipe	1,931	7.2650	0.0640244
60	Pipe	1,931	7.2650	0.1920731
61	Pipe	1,931	6.8286	0.7560153
62	Well 6 to Well 5 - 12" HDPE DR13.5	1,931	6.8286	17.6770025

Name Vol. (gal/min) Velocity (reet/sec) dH (reet/sec) 63 Well 11 to Well 9 Blend - 20" HDPE DR13.5 1,931 2.2176 0.3103212 64 North Wells to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.2160755 65 Pipe 1,931 7.2650 0.0012807 66 Pipe 1,931 7.2650 0.0012807 67 Pipe 1,931 7.2650 0.0012807 68 Pipe 1,931 7.2650 0.0012807 70 Pipe 1,931 7.2650 0.0012809 71 Pipe 1,931 7.2650 0.0040244 73 Pipe 1,931 7.2650 0.0012809 74 Pipe 1,931 7.2650 0.040244 78 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.012801 78 Pipe 1,931 7.2650 0.012801 79 Pipe 1,931		Fathom 8 (Output) 5/30/2014 Page 8 CAROLLO\byallaly				
Pipe Name Vol. Flow Rate (gal/min) Velocity (feet/sec) dH (feet/sec) 63 Well 11 to Well 9 Blend - 20" HDPE DR13.5 1.931 2.2176 0.3103212 64 North Wells to Desalter - 36" HDPE DR13.5 7.724 3.4261 1.2160755 65 Pipe 1.931 7.2650 0.0012807 66 Pipe 1.931 7.2650 0.040244 68 Pipe 1.931 7.2650 0.040244 69 Pipe 1.931 7.2650 0.040244 70 Pipe 1.931 7.2650 0.0640244 73 Pipe 1.931 7.2650 0.0640244 73 Pipe 1.931 7.2650 0.0640244 73 Pipe 1.931 7.2650 0.0640244 74 Pipe 1.931 7.2650 0.0640244 78 Pipe 1.931 7.2650 0.064024 78 Pipe 1.931 7.2650 0.012801 81 Pipe </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
1.90 (gal/min) (feet/sec) (feet/sec) 63 Well 11 to Well 9 Blend - 20" HDPE DR13.5 1,931 2.2176 0.3103212 64 North Wells to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.2160755 65 Pipe 1,931 7.2650 0.0012807 66 Pipe 1,931 7.2650 0.0640244 67 Pipe 1,931 7.2650 0.012804 68 Pipe 1,931 7.2650 0.0640244 68 Pipe 1,931 7.2650 0.012804 71 Pipe 1,931 7.2650 0.012804 71 Pipe 1,931 7.2650 0.012809 77 Pipe 1,931 7.2650 0.012809 77 Pipe 1,931 7.2650 0.012809 77 Pipe 1,931 7.2650 0.012801 80 Pipe 1,931 7.2650 0.012801 71 Pipe 1,931 7.2650	Dine	Name		Vol. Flow Rate	Velocity	dH
63 Well 11 to Well 9 Blend - 20" HDPE DR13.5 1,931 2.2176 0.3103212 64 North Wells to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.2160755 65 Pipe 1,931 7.2650 0.0012807 66 Pipe 1,931 7.2650 0.039769 67 Pipe 1,931 7.2650 0.012807 68 Pipe 1,931 7.2650 0.0120731 70 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 0.0012809 72 Pipe 1,931 7.2650 0.0012809 73 Pipe 1,931 7.2650 0.012809 74 Pipe 1,931 7.2650 0.012801 75 Pipe 1,931 7.2650 0.012801 76 Pipe 1,931 7.2650 0.012801 77 Pipe 1,931	Пре			(gal/min)	(feet/sec)	(feet)
64 North Wells to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.2160755 65 Pipe 1,931 7.2650 0.0012807 66 Pipe 1,931 7.2650 0.0012807 67 Pipe 1,931 7.2650 0.0012807 67 Pipe 1,931 7.2650 0.0012804 68 Pipe 1,931 7.2650 0.0012804 70 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 0.0012809 72 Pipe 1,931 7.2650 0.0012809 73 Pipe 1,931 7.2650 0.0012809 74 Pipe 1,931 7.2650 0.012809 75 Pipe 1,931 7.2650 0.012801 74 Pipe 1,931 7.2650 0.012801 75 Pipe 1,931 7.2650 0.012801 76 Pipe 1,931 7.2650 0.012801 <td>63</td> <td>Well 11 to Well 9 Blend - 20" HDPE DR</td> <td>13.5</td> <td>1,931</td> <td>2.2176</td> <td>0.3103212</td>	63	Well 11 to Well 9 Blend - 20" HDPE DR	13.5	1,931	2.2176	0.3103212
65 Pipe 1,931 7.2650 0.0012807 66 Pipe 1,931 7.2650 1.0397569 67 Pipe 1,931 7.2650 0.0640244 68 Pipe 1,931 7.2650 0.012804 70 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 0.0012804 72 Pipe 1,931 7.2650 0.0012804 73 Pipe 1,931 7.2650 0.012809 74 Pipe 1,931 7.2650 0.012809 75 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.012801 77 Pipe 1,931 7.2650 0.012801 80 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 82 Pipe 1,931 7.2650 0.012801 831 <td>64</td> <td>North Wells to Desalter - 36" HDPE DF</td> <td>13.5</td> <td>7,724</td> <td>3.4261</td> <td>1.2160755</td>	64	North Wells to Desalter - 36" HDPE DF	13.5	7,724	3.4261	1.2160755
66 Pipe 1,931 7,2650 1.0397669 67 Pipe 1,931 7,2650 0.0640244 68 Pipe 1,931 7,2650 0.012804 71 Pipe 1,931 7,2650 0.0012804 72 Pipe 1,931 7,2650 0.0640244 73 Pipe 1,931 7,2650 0.012809 74 Pipe 1,931 7,2650 0.0120731 75 Pipe 1,931 7,2650 0.0012809 76 Pipe 1,931 7,2650 0.0120731 79 Pipe 1,931 7,2650 0.0120731 79 Pipe 1,931 7,2650 0.0120731 81 Pipe 1,931 7,2650 0.0120731 82 Pipe 1,931 7,2650 0.0120731 84 Pipe 1,931 7,2650 0.0120731 84 Pipe 0 0.0000 0.000000 87 <td>65</td> <td>Pipe</td> <td></td> <td>1,931</td> <td>7.2650</td> <td>0.0012807</td>	65	Pipe		1,931	7.2650	0.0012807
67 Pipe 1,931 7.2650 0.0640244 68 Pipe 1,931 7.2650 0.1920731 70 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 0.0012804 72 Pipe 1,931 7.2650 0.0640244 73 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.012809 77 Pipe 1,931 7.2650 0.012809 78 Pipe 1,931 7.2650 0.012801 80 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 82 Pipe 1,931 7.2650 0.012801 83 Pipe 0 0.0000 0.000000 84	66	Pipe		1,931	7.2650	1.0397569
68 Pipe 1,931 7.2650 0.1920731 70 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 0.0040244 73 Pipe 1,931 7.2650 0.012809 74 Pipe 1,931 7.2650 0.0140244 73 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.012809 77 Pipe 1,931 7.2650 0.012809 78 Pipe 1,931 7.2650 0.012801 79 Pipe 1,931 7.2650 0.012801 80 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 82 Pipe 1,931 7.2650 0.012801 83 Pipe 1,931 7.2650 0.012801 84 Pipe 1,931 7.2650 0.0102031 85	67	Pipe		1,931	7.2650	0.0640244
70 Pipe 1,931 7.2650 0.0012804 71 Pipe 1,931 7.2650 1.0397569 72 Pipe 1,931 7.2650 0.0640244 73 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.012809 77 Pipe 1,931 7.2650 0.040244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.012801 80 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 82 Pipe 1,931 7.2650 0.01280731 84 Pipe 1,931 7.2650 0.01280731 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87	68	Pipe		1,931	7.2650	0.1920731
71 Pipe 1,931 7.2650 1.0397569 72 Pipe 1,931 7.2650 0.0640244 73 Pipe 1,931 7.2650 0.1920731 75 Pipe 1,931 7.2650 0.012809 76 Pipe 1,931 7.2650 0.0040244 78 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.040244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 82 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 7.2650 0.1920731 85 Pipe 1,931 7.2650 0.1920731 84 Pipe 0 0.0000 0.00000 0.00000 <	70	Pipe		1,931	7.2650	0.0012804
72 Pipe 1,931 7.2650 0.0640244 73 Pipe 1,931 7.2650 0.1920731 75 Pipe 1,931 7.2650 0.0012809 76 Pipe 1,931 7.2650 0.0012809 77 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.012801 82 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 7.2650 0.1920731 85 Pipe 0 0.0000 0.00000 86 Pipe 0 0.0000 0.00000 87 Pipe 0 0.0000 0.00000 88 <td< td=""><td>71</td><td>Pipe</td><td></td><td>1,931</td><td>7.2650</td><td>1.0397569</td></td<>	71	Pipe		1,931	7.2650	1.0397569
73 Pipe 1,931 7.2650 0.1920731 75 Pipe 1,931 7.2650 0.0012809 76 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.1920731 77 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.0120731 79 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.040244 83 Pipe 1,931 7.2650 0.040244 83 Pipe 0.0000 0.00000 0.00000 84 Pipe 0 0.0000 0.00000 85 Pipe 0 0.0000 0.00000 86 Pipe 0 0.0000 0.00000 87 Pipe 0 0.0000 0.00000 98 Pipe 0 </td <td>72</td> <td>Pipe</td> <td></td> <td>1,931</td> <td>7.2650</td> <td>0.0640244</td>	72	Pipe		1,931	7.2650	0.0640244
75 Pipe 1,931 7.2650 0.0012809 76 Pipe 1,931 7.2650 1.0397569 77 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.012801 80 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0040244 83 Pipe 1,931 7.2650 0.040244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 7.2650 0.1920731 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.00000 0.000000 88 Pipe 0 0.00000 0.000000 91pe <	73	Pipe		1,931	7.2650	0.1920731
76 Pipe 1,931 7.2650 1.0397569 77 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 7.2650 0.012801 81 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0120731 82 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 7.2650 0.1920731 84 Pipe 0 0.0000 0.000000 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.00000 0.000000 87 Pipe 0 0.00000 0.000000 89 Pipe 0 0.00000 0.000000 91 P	75	Pipe		1,931	7.2650	0.0012809
77 Pipe 1,931 7.2650 0.0640244 78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 6.8286 0.7560195 80 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 7.2650 0.1920731 84 Pipe 0 0.0000 0.00000 85 Pipe 0 0.0000 0.00000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe	76	Pipe		1,931	7.2650	1.0397569
78 Pipe 1,931 7.2650 0.1920731 79 Pipe 1,931 6.8286 0.7560195 80 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 0.0012801 82 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 7.2650 0.1920731 85 Pipe 1,931 6.8286 0.7560194 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe	77	Pipe		1,931	7.2650	0.0640244
79 Pipe 1,931 6.8286 0.7560195 80 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 1.0397569 82 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 6.8286 0.7560194 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.00000 89 Pipe 0 0.0000 0.00000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.00000 0.000000 93 Pipe 0 0.00000 0.000000 94 Pipe 0	78	Pipe		1,931	7.2650	0.1920731
80 Pipe 1,931 7.2650 0.0012801 81 Pipe 1,931 7.2650 1.0397569 82 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 6.8286 0.7560194 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDP	79	Pipe		1,931	6.8286	0.7560195
81 Pipe 1,931 7.2650 1.0397569 82 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 6.8286 0.7560194 85 Pipe 0 0.0000 0.00000 86 Pipe 0 0.0000 0.00000 87 Pipe 0 0.0000 0.00000 88 Pipe 0 0.0000 0.00000 88 Pipe 0 0.0000 0.00000 89 Pipe 0 0.0000 0.00000 90 Pipe 0 0.0000 0.00000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.00000 0.000000 93 Pipe 0 0.00000 0.000000 94 Pipe 0 0.00000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5<	80	Pipe		1,931	7.2650	0.0012801
82 Pipe 1,931 7.2650 0.0640244 83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 6.8286 0.7560194 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.00000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5506 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 7,724 3.4261 1.3554621 100 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261	81	Pipe		1,931	7.2650	1.0397569
83 Pipe 1,931 7.2650 0.1920731 84 Pipe 1,931 6.8286 0.7560194 85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 5,793 5.7817 11.5947870 98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 2.3635106	82	Pipe		1,931	7.2650	0.0640244
84Pipe1,9316.82860.756019485Pipe00.00000.00000086Pipe00.00000.00000087Pipe00.00000.00000088Pipe00.00000.00000089Pipe00.00000.00000090Pipe00.00000.00000091Pipe00.00000.00000092Pipe00.00000.00000093Pipe00.00000.00000094Pipe00.00000.00000095Well 7/8 to Well 9 - 20" HDPE DR13.53,8625.55066.883031196Well 9 to Well 10 - 24" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048668104Pipe12,3483.89210.8092790	83	Pipe		1,931	7.2650	0.1920731
85 Pipe 0 0.0000 0.000000 86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 93 Pipe 0 0.00000 0.000000 94 Pipe 0 0.00000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5506 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 7,724 3.4261 1.3554621 <t< td=""><td>84</td><td>Pipe</td><td></td><td>1,931</td><td>6.8286</td><td>0.7560194</td></t<>	84	Pipe		1,931	6.8286	0.7560194
86 Pipe 0 0.0000 0.000000 87 Pipe 0 0.0000 0.000000 88 Pipe 0 0.0000 0.000000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5566 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 5,793 5.7817 11.5947870 98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 2.3635106 100 Well 7 to Well 8 Blend - 12" HDPE DR13.5 7,724 3.4261 2.3635106 101 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 13.9028265 103 <td>85</td> <td>Pipe</td> <td></td> <td>0</td> <td>0.0000</td> <td>0.0000000</td>	85	Pipe		0	0.0000	0.0000000
87 Pipe 0 0.0000 0.00000 88 Pipe 0 0.0000 0.00000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5506 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 5,793 5.7817 11.5947870 98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.3554621 100 Well 10/11 to Well 12 - 36" HDPE DR13.5 7,724 3.4261 2.3635106 101 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 15.7225200 102 Well 7 to Well 8 Blend - 12" HDPE DR13.5 7,724 4.9337 0.1048668 <td>86</td> <td>Pipe</td> <td></td> <td>0</td> <td>0.0000</td> <td>0.0000000</td>	86	Pipe		0	0.0000	0.0000000
88 Pipe 0 0.0000 0.000000 89 Pipe 0 0.0000 0.000000 90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5506 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 5,793 5.7817 11.5947870 98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.3554621 100 Well 10/11 to Well 12 - 36" HDPE DR13.5 7,724 3.4261 2.3635106 101 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 15.7225200 102 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 13.9028265 103 Well 10 to Well 11 - 30" HDPE DR13.5 7,724	87	Pipe		0	0.0000	0.0000000
89Pipe00.00000.00000090Pipe00.00000.00000091Pipe00.00000.00000092Pipe00.00000.00000093Pipe00.00000.00000094Pipe00.00000.00000095Well 7/8 to Well 9 - 20" HDPE DR13.53,8625.55066.883031196Well 9 to Well 10 - 24" HDPE DR13.55,7935.781711.594787098Well 12 to Desalter - 36" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.57,7244.93370.1048688103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048688104Pipe12,3483.89210.8092790	88	Pipe		0	0.0000	0.0000000
90 Pipe 0 0.0000 0.000000 91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5506 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 5,793 5.7817 11.5947870 98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.3554621 100 Well 10/11 to Well 12 - 36" HDPE DR13.5 7,724 3.4261 2.3635106 101 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 15.7225200 102 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 13.9028265 103 Well 10 to Well 11 - 30" HDPE DR13.5 7,724 4.9337 0.1048668 104 Pipe 12,348 3.8921 0.8092790	89	Pipe		0	0.0000	0.0000000
91 Pipe 0 0.0000 0.000000 92 Pipe 0 0.0000 0.000000 93 Pipe 0 0.0000 0.000000 94 Pipe 0 0.0000 0.000000 95 Well 7/8 to Well 9 - 20" HDPE DR13.5 3,862 5.5506 6.8830311 96 Well 9 to Well 10 - 24" HDPE DR13.5 5,793 5.7817 11.5947870 98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.3554621 100 Well 10/11 to Well 12 - 36" HDPE DR13.5 7,724 3.4261 2.3635106 101 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 15.7225200 102 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 13.9028265 103 Well 10 to Well 11 - 30" HDPE DR13.5 7,724 4.9337 0.1048668 104 Pipe 12,348 3.8921 0.8092790	90	Pipe		0	0.0000	0.0000000
92Pipe00.00000.00000093Pipe00.00000.00000094Pipe00.00000.00000095Well 7/8 to Well 9 - 20" HDPE DR13.53,8625.55066.883031196Well 9 to Well 10 - 24" HDPE DR13.55,7935.781711.594787098Well 12 to Desalter - 36" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048668104Pipe12,3483.89210.8092790	91	Pipe		0	0.0000	0.0000000
93Pipe00.00000.00000094Pipe00.00000.00000095Well 7/8 to Well 9 - 20" HDPE DR13.53,8625.55066.883031196Well 9 to Well 10 - 24" HDPE DR13.55,7935.781711.594787098Well 12 to Desalter - 36" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048668104Pipe12,3483.89210.8092790	92	Pipe		0	0.0000	0.0000000
94Pipe00.00000.00000095Well 7/8 to Well 9 - 20" HDPE DR13.53,8625.55066.883031196Well 9 to Well 10 - 24" HDPE DR13.55,7935.781711.594787098Well 12 to Desalter - 36" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048688104Pipe12,3483.89210.8092790	93	Pipe		0	0.0000	0.0000000
95Well 7/8 to Well 9 - 20" HDPE DR13.53,8625.55066.883031196Well 9 to Well 10 - 24" HDPE DR13.55,7935.781711.594787098Well 12 to Desalter - 36" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048688104Pipe12,3483.89210.8092790	94	Pipe		0	0.0000	0.0000000
96Well 9 to Well 10 - 24" HDPE DR13.55,7935.781711.594787098Well 12 to Desalter - 36" HDPE DR13.57,7243.42611.3554621100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048668104Pipe12,3483.89210.8092790	95	Well 7/8 to Well 9 - 20" HDPE DR13.5		3,862	5.5506	6.8830311
98 Well 12 to Desalter - 36" HDPE DR13.5 7,724 3.4261 1.3554621 100 Well 10/11 to Well 12 - 36" HDPE DR13.5 7,724 3.4261 2.3635106 101 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 15.7225200 102 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 13.9028265 103 Well 10 to Well 11 - 30" HDPE DR13.5 7,724 4.9337 0.1048668 104 Pipe 12,348 3.8921 0.8092790	96	Well 9 to Well 10 - 24" HDPE DR13.5		5,793	5.7817	11.5947870
100Well 10/11 to Well 12 - 36" HDPE DR13.57,7243.42612.3635106101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048668104Pipe12,3483.89210.8092790	98	Well 12 to Desalter - 36" HDPE DR13.5	5	7,724	3.4261	1.3554621
101Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828615.7225200102Well 7 to Well 8 Blend - 12" HDPE DR13.51,9316.828613.9028265103Well 10 to Well 11 - 30" HDPE DR13.57,7244.93370.1048668104Pipe12,3483.89210.8092790	100	Well 10/11 to Well 12 - 36" HDPE DR1:	3.5	7,724	3.4261	2.3635106
102 Well 7 to Well 8 Blend - 12" HDPE DR13.5 1,931 6.8286 13.9028265 103 Well 10 to Well 11 - 30" HDPE DR13.5 7,724 4.9337 0.1048668 104 Pipe 12,348 3.8921 0.8092790	101	Well 7 to Well 8 Blend - 12" HDPE DR1	3.5	1,931	6.8286	15.7225200
103 Well 10 to Well 11 - 30" HDPE DR13.5 7,724 4.9337 0.1048668 104 Pipe 12,348 3.8921 0.8092790	102	Well 7 to Well 8 Blend - 12" HDPE DR1	3.5	1,931	6.8286	13.9028265
104 Pipe 12,348 3.8921 0.8092790	103	Well 10 to Well 11 - 30" HDPE DR13.5		7,724	4.9337	0.1048668
	104	Pipe		12.348	3.8921	0.8092790
105 Pipe 3.087 3.8921 0.3487453	105	Pipe		3 087	3 8921	0 3487453
106 Pine 3 087 4 9259 1 1992354	106	Pine		3 087	4 9259	1 1992354

	Fathom 8 (Output) 5/30/2014 Page 9 CAROLLO\byallaly			
Pipe	Name	Vol. Flow Rate	Velocity	dH
		(gal/min)	(feet/sec)	(feet)
107	Pipe	0	0.0000	0.0000000
108	Pipe	9,261	2.9191	0.0074305
109	Pipe	3,087	3.8921	0.3487453
110	Pipe	3,087	4.9259	1.1992354
111	Pipe	3,087	0.9730	0.0009715
112	Pipe	6,174	1.9460	0.0035069
113	Pipe	3,087	3.8921	0.3487453
114	Pipe	3,087	4.9259	1.1992354
115	Pipe	6,174	1.9460	0.0035069
116	Pipe	0	0.0000	0.0000000
117	Pipe	3,087	0.9730	0.0009715
118	Pipe	3,087	3.8921	0.3487453
119	Pipe	3,087	4.9259	1.1992354
120	Pipe	9,261	2.9191	0.0074305
121	Pipe	0	0.0000	0.0000000
122	Pipe	12,348	3.8921	0.0126588
123	Pipe	0	0.0000	0.0000000
124	Pipe	0	0.0000	0.0000000

Fathom 8 (Output) 5/30/2014 Page 10 CAROLLO\byallaly	

All Junction Table

Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
5	PTP Connection	0	0.0	0.0000	0.0000
6	PVCWD Connection	12,348	1,713.9	0.0000	0.0000
7	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
24	Reservoir	1,931	268.0	0.0000	0.0000
25	Well No. 1	1,931	268.0	0.0000	-225.6302
26	Check Valve	1,931	268.0	0.4684	0.3842
27	Valve	1,931	268.0	0.8328	0.6831
28	Branch	1,931	268.0	0.0000	0.0000
29	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
30	Reservoir	1,931	268.0	0.0000	0.0000
31	Well No. 2	1,931	268.0	0.0000	-199.6296
32	Check Valve	1,931	268.0	0.4684	0.3842
33	Valve	1,931	268.0	0.8328	0.6831
34	Branch	1,931	268.0	0.0000	0.0000
35	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
36	Reservoir	1,931	268.0	0.0000	0.0000
37	Well No. 3	1,931	268.0	0.0000	-188.3640
38	Check Valve	1,931	268.0	0.4684	0.3842
39	Valve	1,931	268.0	0.8328	0.6831
40	Branch	1,931	268.0	0.0000	0.0000
41	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
42	Reservoir	0	0.0	0.0000	0.0000
X43	Well No. 4	0	0.0	0.0000	N/A
44	Check Valve	0	0.0	0.0000	0.0000
45	Valve	0	0.0	0.0000	0.0000
46	Branch	0	0.0	0.0000	0.0000
47	Reservoir	0	0.0	0.0000	0.0000
X48	Well No. 5	0	0.0	0.0000	N/A
49	Check Valve	0	0.0	0.0000	0.0000
50	Valve	0	0.0	0.0000	0.0000
51	Branch	0	0.0	0.0000	0.0000
52	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
53	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
54	Reservoir	1,931	268.0	0.0000	0.0000
55	Well No. 6	1,931	268.0	0.0000	-194.1538
56	Check Valve	1,931	268.0	0.4684	0.3842
57	Valve	1,931	268.0	0.8328	0.6831

	Fathom 8 (Output) 5/30/2014 Page 11 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
58	Branch	1,931	268.0	0.0000	0.0000
59	Bend	1,931	268.0	0.1908	0.1382
60	Pressure Entering Desalter	N/A	N/A	0.0000	0.0000
61	Reservoir	1,931	268.0	0.0000	0.0000
62	Well No. 7	1,931	268.0	0.0000	-210.7906
63	Check Valve	1,931	268.0	0.4684	0.3842
64	Valve	1,931	268.0	0.8328	0.6831
65	Branch	1,931	268.0	0.0000	0.0000
66	Reservoir	1,931	268.0	0.0000	0.0000
67	Well No. 8	1,931	268.0	0.0000	-212.6103
68	Check Valve	1,931	268.0	0.4684	0.3842
69	Valve	1,931	268.0	0.8328	0.6831
70	Branch	1,931	268.0	0.0000	0.0000
71	Reservoir	1,931	268.0	0.0000	0.0000
72	Well No. 9	1,931	268.0	0.0000	-191.0212
73	Check Valve	1,931	268.0	0.4684	0.3842
74	Valve	1,931	268.0	0.8328	0.6831
75	Branch	1,931	268.0	0.0000	0.0000
76	Reservoir	1,931	268.0	0.0000	0.0000
77	Well No. 10	1,931	268.0	0.0000	-179.1985
78	Check Valve	1,931	268.0	0.4684	0.3842
79	Valve	1,931	268.0	0.8328	0.6831
80	Branch	1,931	268.0	0.0000	0.0000
81	Reservoir	0	0.0	0.0000	0.0000
X82	Well No. 11	0	0.0	0.0000	N/A
83	Check Valve	0	0.0	0.0000	0.0000
84	Valve	0	0.0	0.0000	0.0000
85	Branch	0	0.0	0.0000	0.0000
86	Reservoir	0	0.0	0.0000	0.0000
X87	Well No. 12	0	0.0	0.0000	N/A
88	Check Valve	0	0.0	0.0000	0.0000
89	Valve	0	0.0	0.0000	0.0000
90	Branch	0	0.0	0.0000	0.0000
91	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
92	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
93	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
94	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
95	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
96	Reservoir	12.348	1,713.9	0.0000	0.0000
97	Pump	3.087	428.5	0.0000	-123.2630

	Fathom 8 (Output) 5/30/2014 Page 12 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
98	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
99	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
100	Pump	3,087	428.5	0.0000	-123.7482
101	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
102	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
103	Pump	3,087	428.5	0.0000	-123.1512
104	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
105	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
106	Dead End	0	0.0	0.0000	0.0000
107	Pump	3,087	428.5	0.0000	-123.8470
108	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
109	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
X110	Pump	0	0.0	0.0000	N/A
111	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
112	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
113	Dead End	0	0.0	0.0000	0.0000

Fathom 8 (Output) 5/30/2014 Page 2 CAROLLO\byallaly		
General Title: AFT Fathom Model Analysis run on: 5/30/2014 4:38:47 PM Application version: AFT Fathom Version 8 (2013 Input File: C:\Users\byallaly\Desktop\UWCD Raw	.10.24) and Product Water Pumping.fth	
Scenario: Base Scenario/10,000 AFY_Worst Wat Output File: C:\Users\byallaly\Desktop\UWCD Ra Execution Time= 0.11 seconds Total Number Of Head/Pressure Iterations= 0 Total Number Of Flow Iterations= 2 Total Number Of Temperature Iterations= 0 Number Of Pipes= 95	er w and Product Water Pumping_3.out	
Number Of Junctions= 93 Matrix Method= Gaussian Elimination Pressure/Head Tolerance= 0.0001 relative change Flow Rate Tolerance= 0.0001 relative change Temperature Tolerance= 0.0001 relative change Flow Relaxation= (Automatic) Pressure Relaxation= (Automatic)	e	
Constant Fluid Property Model Fluid Database: AFT Standard Fluid: Water at 1 atm Max Fluid Temperature Data= 212 deg. F Min Fluid Temperature Data= 32 deg. F Temperature= 22 deg. C Density= 62.29622 lbm/ft3 Viscosity= 2.30822 lbm/hr-ft Vapor Pressure= 0.38264 psia Viscosity Model= Newtonian Apply laminar and non-Newtonian correction to: I Polynomials Corrections applied to the following junctions: Br: Wye, Control Valve, Spray Discharge, Relief Valv	Pipe Fittings & Losses, Junction K factor anch, Reservoir, Assigned Flow, Assigne	rs, Junction Special Losses, Junction ed Pressure, Area Change, Bend, Tee or
Ambient Pressure (constant)= 1 atm Gravitational Acceleration= 1 g Turbulent Flow Above Reynolds Number= 4000 Laminar Flow Below Reynolds Number= 2300 Total Inflow= 14,759 gal/min Total Outflow= 14,759 gal/min Maximum Static Pressure is 87.94 psia at Pipe 33 Minimum Static Pressure is 14.67 psia at Pipe 33 Minimum Static Pressure is 14.67 psia at Pipe 10 Fixed Energy Cost = 0.0125 U.S. Dollars per kW- The following cost databases were used: Total of All Model Costs = 0 U.S. Dollars	i Inlet 4 Inlet hr	

Fathom 8 (Output) 5/30/2014 Page 3 CAROLLO\byallaly	

<u>Warnings</u>

No Warnings

Fathom 8 (Output) 5/30/2014 Page 4 CAROLLO\byallaly	

Pump Summary

Jct	Name	Vol. Flow (gal/min)	dH (feet)	Overall Efficiency (Percent)	Speed (Percent)	Overall Power (hp)	NPSHA (feet)	NPSHR (feet)	Energy Cost (U.S. Dollars)
25	Well No. 1	1,717	216.8	100.0	N/A	93.90	39.08	N/A	0
31	Well No. 2	1,717	195.8	100.0	N/A	84.81	40.08	N/A	0
37	Well No. 3	1,717	186.7	100.0	N/A	80.87	40.08	N/A	0
43	Well No. 4	1,717	178.6	100.0	N/A	77.36	42.08	N/A	0
X48	Well No. 5	0	N/A	N/A	0	N/A	N/A	N/A	0
55	Well No. 6	1,717	190.3	100.0	N/A	82.45	42.08	N/A	0
X62	Well No. 7	0	N/A	N/A	0	N/A	N/A	N/A	0
X67	Well No. 8	0	N/A	N/A	0	N/A	N/A	N/A	0
X72	Well No. 9	0	N/A	N/A	0	N/A	N/A	N/A	0
X77	Well No. 10	0	N/A	N/A	0	N/A	N/A	N/A	0
X82	Well No. 11	0	N/A	N/A	0	N/A	N/A	N/A	0
X87	Well No. 12	0	N/A	N/A	0	N/A	N/A	N/A	0
97	Pump	3,087	154.5	100.0	N/A	120.38	40.17	N/A	0
100	Pump	3,087	155.0	100.0	N/A	120.71	40.14	N/A	0
X103	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0
X107	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0
X110	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0

Fathom 8 (Output) 5/30/2014 Page 5 CAROLLO\byallaly	

Valve Summary

Jct	Name	Valve Type	Vol. Flow (gal/min)	dH (feet)	P Static In (psia)	Cv	К	Valve State
27	Valve	REGULAR	1,717	0.5401	83.02	3,550	0.8328	Open
33	Valve	REGULAR	1,717	0.5401	74.37	3,550	0.8328	Open
39	Valve	REGULAR	1,717	0.5401	70.44	3,550	0.8328	Open
45	Valve	REGULAR	1,717	0.5401	66.93	3,550	0.8328	Open
50	Valve	REGULAR	0	N/A	66.80	N/A	N/A	Open
57	Valve	REGULAR	1,717	0.5401	72.87	3,550	0.8328	Open
64	Valve	REGULAR	0	N/A	65.56	N/A	N/A	Open
69	Valve	REGULAR	0	N/A	66.86	N/A	N/A	Open
74	Valve	REGULAR	0	N/A	66.43	N/A	N/A	Open
79	Valve	REGULAR	0	N/A	68.16	N/A	N/A	Open
84	Valve	REGULAR	0	N/A	66.86	N/A	N/A	Open
89	Valve	REGULAR	0	N/A	66.86	N/A	N/A	Open
26	Check Valve	CHECK	1,717	0.2962	83.17	4,793	0.4568	Open
32	Check Valve	CHECK	1,717	0.2962	74.52	4,793	0.4568	Open
38	Check Valve	CHECK	1,717	0.2962	70.59	4,793	0.4568	Open
44	Check Valve	CHECK	1,717	0.2962	67.08	4,793	0.4568	Open
49	Check Valve	CHECK	0	N/A	66.80	N/A	N/A	Open
56	Check Valve	CHECK	1,717	0.2962	73.02	4,793	0.4568	Open
63	Check Valve	CHECK	0	N/A	65.56	N/A	N/A	Open
68	Check Valve	CHECK	0	N/A	66.86	N/A	N/A	Open
73	Check Valve	CHECK	0	N/A	66.43	N/A	N/A	Open
78	Check Valve	CHECK	0	N/A	68.16	N/A	N/A	Open
83	Check Valve	CHECK	0	N/A	66.86	N/A	N/A	Open
88	Check Valve	CHECK	0	N/A	66.86	N/A	N/A	Open

Fathom 8 (Output) 5/30/2014 Page 6 CAROLLO\byallaly	

Reservoir Summary

Jct	Name	Туре	Liq. Height (feet)	Liq. Elevation (feet)	Surface Pressure (psia)	Liquid Volume (feet3)	Liquid Mass (Ibm)	Net Vol. Flow (gal/min)	Net Mass Flow (Ibm/sec)
24	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,717	-238.3
30	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,717	-238.3
36	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,717	-238.3
42	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,717	-238.3
47	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
54	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,717	-238.3
61	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
66	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
71	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
76	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
81	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
86	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
96	Reservoir	Infinite	N/A	20.00	14.70	N/A	N/A	-6,174	-856.9

Fathom 8 (Output) 5/30/2014 Page 7 CAROLLO\byallaly	

Pipe Output Table

Dino	Name	Vol. Flow Rate	Velocity	dH
Fipe		(gal/min)	(feet/sec)	(feet)
4	Pipe	6,174	4.3786	44.8662936
X5	Pipe	0	0.0000	0.0000000
6	Pipe	6,174	4.3786	20.6001902
29	Pipe	1,717	6.4599	0.0010284
30	Pipe	1,717	6.4599	0.8316896
31	Pipe	1,717	6.4599	0.0514217
32	Pipe	1,717	6.4599	0.1542651
33	Well 1 to Well 2 - 12" HDPE DR13.5	1,717	6.0719	21.8167310
34	Pipe	1,717	6.4599	0.0010285
35	Pipe	1,717	6.4599	0.8316896
36	Pipe	1,717	6.4599	0.0514217
37	Pipe	1,717	6.4599	0.1542651
38	Pipe	1,717	6.0719	0.6062272
39	Well 2 to Well 3 - 20" HDPE DR13.5	3,434	4.9349	9.1220243
40	Pipe	1,717	6.4599	0.0010285
41	Pipe	1,717	6.4599	0.8316896
42	Pipe	1,717	6.4599	0.0514217
43	Pipe	1,717	6.4599	0.1542651
44	Pipe	1,717	6.0719	0.6062273
45	Pipe	1,717	6.4599	0.0010287
46	Pipe	1,717	6.4599	0.8316896
47	Pipe	1,717	6.4599	0.0514217
48	Pipe	1,717	6.4599	0.1542651
49	Pipe	1,717	6.0719	0.6062273
50	Well 3 to Well 4 - 24" HDPE DR13.5	5,151	5.1410	7.9339072
51	Pipe	0	0.0000	0.0000000
52	Pipe	0	0.0000	0.0000000
53	Pipe	0	0.0000	0.0000000
54	Pipe	0	0.0000	0.0000000
55	Pipe	0	0.0000	0.0000000
56	Well 4 to Well 5/6 Blend - 30" HDPE DR13.5	6,868	4.3869	2.2833119
57	Pipe	1,717	6.4599	0.0010287
58	Pipe	1,717	6.4599	0.8316896
59	Pipe	1,717	6.4599	0.0514217
60	Pipe	1,717	6.4599	0.1542651
61	Pipe	1,717	6.0719	0.6062235
62	Well 6 to Well 5 - 12" HDPE DR13.5	1,717	6.0719	14.2647646

	Fathom 8 (Output) 5/30/2014 Page 8 CAROLLO\byallaly				
Dia	Name		Vol.	Velocity	dH
Pipe			(gal/min)	(feet/sec)	(feet)
63	Well 11 to Well 9 Blend - 20" HDPE DF	R13.5	1,717	1.9719	0.2507781
64	North Wells to Desalter - 36" HDPE DI	R13.5	8,585	3.8080	1.4755265
65	Pipe		0	0.0000	0.0000000
66	Pipe		0	0.0000	0.0000000
67	Pipe		0	0.0000	0.0000000
68	Pipe		0	0.0000	0.0000000
70	Pipe		0	0.0000	0.0000000
71	Pipe		0	0.0000	0.0000000
72	Pipe		0	0.0000	0.0000000
73	Pipe		0	0.0000	0.0000000
75	Pipe		0	0.0000	0.0000000
76	Pipe		0	0.0000	0.0000000
77	Pipe		0	0.0000	0.0000000
78	Pipe		0	0.0000	0.0000000
79	Pipe		0	0.0000	0.0000000
80	Pipe		0	0.0000	0.0000000
81	Pine		0	0.0000	0.0000000
82	Pine		0	0.0000	0.0000000
83	Pine		0	0.0000	0.0000000
84	Pine		0	0.0000	0.0000000
95	Dipo		0	0.0000	0.0000000
86			0	0.0000	0.0000000
00			0	0.0000	0.0000000
07			0	0.0000	0.0000000
00			0	0.0000	0.0000000
89			0	0.0000	0.0000000
90	Pipe		0	0.0000	0.0000000
91	Pipe		0	0.0000	0.0000000
92	Pipe		0	0.0000	0.0000000
93	Pipe		0	0.0000	0.0000000
94	Pipe		0	0.0000	0.0000000
95	Well 7/8 to Well 9 - 20" HDPE DR13.5		0	0.0000	0.0000000
96	Well 9 to Well 10 - 24" HDPE DR13.5		0	0.0000	0.0000000
98	Well 12 to Desalter - 36" HDPE DR13.	5	0	0.0000	0.0000000
100	Well 10/11 to Well 12 - 36" HDPE DR1	3.5	0	0.0000	0.0000000
101	Well 7 to Well 8 Blend - 12" HDPE DR	13.5	0	0.0000	0.0000000
102	Well 7 to Well 8 Blend - 12" HDPE DR	13.5	0	0.0000	0.0000000
103	Well 10 to Well 11 - 30" HDPE DR13.5		0	0.0000	0.0000000
104	Pipe		6,174	1.9460	0.2057422
105	Ріре		3,087	3.8921	0.3487453
106	Pipe		3,087	4.9259	1.1992354

	Fathom 8 (Output) 5/30/2014 Page 9 CAROLLO\byallaly			
Pine	Name	Vol. Flow Rate	Velocity	dH
Tipe		(gal/min)	(feet/sec)	(feet)
107	Pipe	0	0.0000	0.0000000
108	Pipe	3,087	0.9730	0.0009715
109	Pipe	3,087	3.8921	0.3487453
110	Pipe	3,087	4.9259	1.1992354
111	Pipe	3,087	0.9730	0.0009715
112	Pipe	0	0.0000	0.0000000
113	Pipe	0	0.0000	0.0000000
114	Pipe	0	0.0000	0.0000000
115	Pipe	6,174	1.9460	0.0035070
116	Pipe	0	0.0000	0.0000000
117	Pipe	0	0.0000	0.0000000
118	Pipe	0	0.0000	0.0000000
119	Pipe	0	0.0000	0.0000000
120	Pipe	6,174	1.9460	0.0035069
121	Pipe	0	0.0000	0.0000000
122	Pipe	6,174	1.9460	0.0035069
123	Pipe	0	0.0000	0.0000000
124	Pipe	0	0.0000	0.0000000

Fathom 8 (Output) 5/30/2014 Page 10 CAROLLO∖byallaly	

All Junction Table

Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (lbm/sec)	Loss Factor (K)	dH (feet)
5	PTP Connection	0	0.0	0.0000	0.0000
6	PVCWD Connection	6,174	856.9	0.0000	0.0000
7	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
24	Reservoir	1,717	238.3	0.0000	0.0000
25	Well No. 1	1,717	238.3	0.0000	-216.7528
26	Check Valve	1,717	238.3	0.4568	0.2962
27	Valve	1,717	238.3	0.8328	0.5401
28	Branch	1,717	238.3	0.0000	0.0000
29	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
30	Reservoir	1,717	238.3	0.0000	0.0000
31	Well No. 2	1,717	238.3	0.0000	-195.7628
32	Check Valve	1,717	238.3	0.4568	0.2962
33	Valve	1,717	238.3	0.8328	0.5401
34	Branch	1,717	238.3	0.0000	0.0000
35	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
36	Reservoir	1,717	238.3	0.0000	0.0000
37	Well No. 3	1,717	238.3	0.0000	-186.6736
38	Check Valve	1,717	238.3	0.4568	0.2962
39	Valve	1,717	238.3	0.8328	0.5401
40	Branch	1,717	238.3	0.0000	0.0000
41	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
42	Reservoir	1,717	238.3	0.0000	0.0000
43	Well No. 4	1,717	238.3	0.0000	-178.5595
44	Check Valve	1,717	238.3	0.4568	0.2962
45	Valve	1,717	238.3	0.8328	0.5401
46	Branch	1,717	238.3	0.0000	0.0000
47	Reservoir	0	0.0	0.0000	0.0000
X48	Well No. 5	0	0.0	0.0000	N/A
49	Check Valve	0	0.0	0.0000	0.0000
50	Valve	0	0.0	0.0000	0.0000
51	Branch	0	0.0	0.0000	0.0000
52	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
53	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
54	Reservoir	1,717	238.3	0.0000	0.0000
55	Well No. 6	1,717	238.3	0.0000	-190.3046
56	Check Valve	1,717	238.3	0.4568	0.2962
57	Valve	1,717	238.3	0.8328	0.5401

	Fathom 8 (Output) 5/30/2014 Page 11 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
58	Branch	1,717	238.3	0.0000	0.0000
59	Bend	1,717	238.3	0.1908	0.1093
60	Pressure Entering Desalter	N/A	N/A	0.0000	0.0000
61	Reservoir	0	0.0	0.0000	0.0000
X62	Well No. 7	0	0.0	0.0000	N/A
63	Check Valve	0	0.0	0.0000	0.0000
64	Valve	0	0.0	0.0000	0.0000
65	Branch	0	0.0	0.0000	0.0000
66	Reservoir	0	0.0	0.0000	0.0000
X67	Well No. 8	0	0.0	0.0000	N/A
68	Check Valve	0	0.0	0.0000	0.0000
69	Valve	0	0.0	0.0000	0.0000
70	Branch	0	0.0	0.0000	0.0000
71	Reservoir	0	0.0	0.0000	0.0000
X72	Well No. 9	0	0.0	0.0000	N/A
73	Check Valve	0	0.0	0.0000	0.0000
74	Valve	0	0.0	0.0000	0.0000
75	Branch	0	0.0	0.0000	0.0000
76	Reservoir	0	0.0	0.0000	0.0000
X77	Well No. 10	0	0.0	0.0000	N/A
78	Check Valve	0	0.0	0.0000	0.0000
79	Valve	0	0.0	0.0000	0.0000
80	Branch	0	0.0	0.0000	0.0000
81	Reservoir	0	0.0	0.0000	0.0000
X82	Well No. 11	0	0.0	0.0000	N/A
83	Check Valve	0	0.0	0.0000	0.0000
84	Valve	0	0.0	0.0000	0.0000
85	Branch	0	0.0	0.0000	0.0000
86	Reservoir	0	0.0	0.0000	0.0000
X87	Well No. 12	0	0.0	0.0000	N/A
88	Check Valve	0	0.0	0.0000	0.0000
89	Valve	0	0.0	0.0000	0.0000
90	Branch	0	0.0	0.0000	0.0000
91	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
92	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
93	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
94	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
95	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
96	Reservoir	6.174	856.9	0.0000	0.0000
97	Pump	3.087	428 5	0.0000	-154.5463

	Fathom 8 (Output) 5/30/2014 Page 12 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
98	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
99	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
100	Pump	3,087	428.5	0.0000	-154.9698
101	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
102	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
X103	Pump	0	0.0	0.0000	N/A
104	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
105	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
106	Dead End	0	0.0	0.0000	0.0000
X107	Pump	0	0.0	0.0000	N/A
108	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
109	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
X110	Pump	0	0.0	0.0000	N/A
111	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
112	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
113	Dead End	0	0.0	0.0000	0.0000

Fathom 8 (Output) 5/30/2014 Page 2 CAROLLO\byallaly
General Title: AFT Fathom Model Analysis run on: 5/30/2014 4:40:15 PM Application version: AFT Fathom Version 8 (2013.10.24) Input File: C:\Users\byallaly\Desktop\UWCD Raw and Product Water Pumping.fth Scenario: Base Scenario/20,000 AFY_Worst Water Output File: C:\Users\byallaly\Desktop\UWCD Raw and Product Water Pumping_4.out Execution Time= 0.13 seconds Total Number Of Head/Pressure Iterations= 51 Total Number Of Temperature Iterations= 0
Number Of Pipes = 95 Number Of Junctions = 93 Matrix Method = Gaussian Elimination Pressure/Head Tolerance = 0.0001 relative change Flow Rate Tolerance = 0.0001 relative change Temperature Tolerance = 0.0001 relative change Flow Relaxation = (Automatic) Pressure Relaxation = (Automatic) Constant Fluid Drepath Medel
Constant Fluid Property Model Fluid Database: AFT Standard Fluid: Water at 1 atm Max Fluid Temperature Data= 212 deg. F Min Fluid Temperature Data= 32 deg. F Temperature= 22 deg. C Density= 62.29622 lbm/ft3 Viscosity= 2.30822 lbm/hr-ft Vapor Pressure= 0.38264 psia Viscosity Model= Newtonian Apply laminar and non-Newtonian correction to: Pipe Fittings & Losses, Junction K factors, Junction Special Losses, Junction Polynomials Corrections applied to the following junctions: Branch, Reservoir, Assigned Flow, Assigned Pressure, Area Change, Bend, Tee or Wye, Control Valve, Spray Discharge, Relief Valve
Ambient Pressure (constant)= 1 atm Gravitational Acceleration= 1 g Turbulent Flow Above Reynolds Number= 4000 Laminar Flow Below Reynolds Number= 2300 Total Inflow= 29,511 gal/min Total Outflow= 29,511 gal/min Maximum Static Pressure is 91.85 psia at Pipe 33 Inlet Minimum Static Pressure is 91.85 psia at Pipe 104 Inlet Fixed Energy Cost = 0.0125 U.S. Dollars per kW-hr The following cost databases were used: Total of All Model Costs = 0 U.S. Dollars

Fathom 8 (Output) 5/30/2014 Page 3 CAROLLO\byallaly	

<u>Warnings</u>

No Warnings

Fathom 8 (Output) 5/30/2014 Page 4 CAROLLO\byallaly	

Pump Summary

Jct	Name	Vol. Flow (gal/min)	dH (feet)	Overall Efficiency (Percent)	Speed (Percent)	Overall Power (hp)	NPSHA (feet)	NPSHR (feet)	Energy Cost (U.S. Dollars)
25	Well No. 1	1,907	226.4	100.0	N/A	108.92	39.08	N/A	0
31	Well No. 2	1,907	200.9	100.0	N/A	96.69	40.08	N/A	0
37	Well No. 3	1,907	189.9	100.0	N/A	91.39	40.08	N/A	0
43	Well No. 4	1,907	180.1	100.0	N/A	86.66	42.08	N/A	0
X48	Well No. 5	0	N/A	N/A	0	N/A	N/A	N/A	0
55	Well No. 6	1,907	194.3	100.0	N/A	93.49	42.08	N/A	0
62	Well No. 7	1,907	209.9	100.0	N/A	101.00	42.08	N/A	0
67	Well No. 8	1,907	211.7	100.0	N/A	101.85	45.08	N/A	0
72	Well No. 9	1,907	190.6	100.0	N/A	91.70	44.08	N/A	0
77	Well No. 10	1,907	179.0	100.0	N/A	86.14	48.08	N/A	0
X82	Well No. 11	0	N/A	N/A	0	N/A	N/A	N/A	0
X87	Well No. 12	0	N/A	N/A	0	N/A	N/A	N/A	0
97	Pump	3,087	117.9	100.0	N/A	91.82	39.27	N/A	0
100	Pump	3,087	118.4	100.0	N/A	92.20	39.24	N/A	0
103	Pump	3,087	117.8	100.0	N/A	91.73	39.53	N/A	0
107	Pump	3,087	118.5	100.0	N/A	92.28	39.22	N/A	0
X110	Pump	0	N/A	N/A	0	N/A	N/A	N/A	0

Fathom 8 (Output) 5/30/2014 Page 5 CAROLLO\byallaly	

Valve Summary

Jct	Name	Valve Type	Vol. Flow (gal/min)	dH (feet)	P Static In (psia)	Cv	К	Valve State
27	Valve	REGULAR	1,907	0.6662	86.99	3,550	0.8328	Open
33	Valve	REGULAR	1,907	0.6662	76.43	3,550	0.8328	Open
39	Valve	REGULAR	1,907	0.6662	71.66	3,550	0.8328	Open
45	Valve	REGULAR	1,907	0.6662	67.41	3,550	0.8328	Open
50	Valve	REGULAR	0	N/A	66.98	N/A	N/A	Open
57	Valve	REGULAR	1,907	0.6662	74.42	3,550	0.8328	Open
64	Valve	REGULAR	1,907	0.6662	81.16	3,550	0.8328	Open
69	Valve	REGULAR	1,907	0.6662	83.23	3,550	0.8328	Open
74	Valve	REGULAR	1,907	0.6662	73.67	3,550	0.8328	Open
79	Valve	REGULAR	1,907	0.6662	70.40	3,550	0.8328	Open
84	Valve	REGULAR	0	N/A	68.43	N/A	N/A	Open
89	Valve	REGULAR	0	N/A	67.43	N/A	N/A	Open
26	Check Valve	CHECK	1,907	0.3738	87.18	4,739	0.4672	Open
32	Check Valve	CHECK	1,907	0.3738	76.61	4,739	0.4672	Open
38	Check Valve	CHECK	1,907	0.3738	71.85	4,739	0.4672	Open
44	Check Valve	CHECK	1,907	0.3738	67.59	4,739	0.4672	Open
49	Check Valve	CHECK	0	N/A	66.98	N/A	N/A	Open
56	Check Valve	CHECK	1,907	0.3738	74.61	4,739	0.4672	Open
63	Check Valve	CHECK	1,907	0.3738	81.35	4,739	0.4672	Open
68	Check Valve	CHECK	1,907	0.3738	83.42	4,739	0.4672	Open
73	Check Valve	CHECK	1,907	0.3738	73.86	4,739	0.4672	Open
78	Check Valve	CHECK	1,907	0.3738	70.59	4,739	0.4672	Open
83	Check Valve	CHECK	0	N/A	68.43	N/A	N/A	Open
88	Check Valve	CHECK	0	N/A	67.43	N/A	N/A	Open

Fathom 8 (Output) 5/30/2014 Page 6 CAROLLO\byallaly	

Reservoir Summary

Jct	Name	Туре	Liq. Height (feet)	Liq. Elevation (feet)	Surface Pressure (psia)	Liquid Volume (feet3)	Liquid Mass (Ibm)	Net Vol. Flow (gal/min)	Net Mass Flow (Ibm/sec)
24	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
30	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
36	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
42	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
47	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
54	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
61	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
66	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
71	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
76	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	-1,907	-264.7
81	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
86	Reservoir	Infinite	N/A	-40.00	14.70	N/A	N/A	0	0.0
96	Reservoir	Infinite	N/A	20.00	14.70	N/A	N/A	-12,348	-1,713.9

Fathom 8 (Output) 5/30/2014 Page 7 CAROLLO\byallaly	

Pipe Output Table

Pipe	Name	Vol. Flow Rate	Velocity	dH
· ·		(gal/min)	(feet/sec)	(feet)
4	Pipe	12,348	3.8921	22.7969367
5	Pipe	3,926	1.2375	0.8097693
6	Pipe	8,422	2.6546	5.1676385
29	Pipe	1,907	7.1747	0.0012509
30	Pipe	1,907	7.1747	1.0153057
31	Pipe	1,907	7.1747	0.0625456
32	Pipe	1,907	7.1747	0.1876368
33	Well 1 to Well 2 - 12" HDPE DR13.5	1,907	6.7438	26.4246952
34	Pipe	1,907	7.1747	0.0012510
35	Pipe	1,907	7.1747	1.0153057
36	Pipe	1,907	7.1747	0.0625456
37	Pipe	1,907	7.1747	0.1876368
38	Pipe	1,907	6.7438	0.7384383
39	Well 2 to Well 3 - 20" HDPE DR13.5	3,814	5.4809	11.0514290
40	Pipe	1,907	7.1747	0.0012510
41	Pipe	1,907	7.1747	1.0153057
42	Pipe	1,907	7.1747	0.0625456
43	Pipe	1,907	7.1747	0.1876368
44	Pipe	1,907	6.7438	0.7384384
45	Pipe	1,907	7.1747	0.0012511
46	Pipe	1,907	7.1747	1.0153057
47	Pipe	1,907	7.1747	0.0625456
48	Pipe	1,907	7.1747	0.1876368
49	Pipe	1,907	6.7438	0.7384383
50	Well 3 to Well 4 - 24" HDPE DR13.5	5,721	5.7099	9.6151748
51	Pipe	0	0.0000	0.0000000
52	Pipe	0	0.0000	0.0000000
53	Pipe	0	0.0000	0.0000000
54	Pipe	0	0.0000	0.0000000
55	Pipe	0	0.0000	0.0000000
56	Well 4 to Well 5/6 Blend - 30" HDPE DR13.5	7,628	4.8723	2.7672518
57	Pipe	1,907	7.1747	0.0012511
58	Pipe	1,907	7.1747	1.0153057
59	Pipe	1,907	7.1747	0.0625456
60	Pipe	1,907	7.1747	0.1876368
61	Pipe	1,907	6.7438	0.7384382
62	Well 6 to Well 5 - 12" HDPE DR13.5	1,907	6.7438	17.2776857

	Fathom 8 (Output) 5/30/2014 Page 8 CAROLLO\byallaly				
Pipe	Name	Vol. Flow Rate	Velocity	dH	
		(gai/min)	(feet/sec)	(feet)	
63	Well 11 to Well 9 Blend - 20" HDPE DF	R13.5 1,90	7 2.1901	0.3033314	
64	North Wells to Desalter - 36" HDPE DI	R13.5 9,53	5 4.2294	1.7882675	
65	Pipe	1,90	/ /.1/4/	0.0012511	
66	Pipe	1,90	/ /.1/4/	1.0153057	
67	Pipe	1,90	/ /.1/4/	0.0625456	
08	Pipe	1,90	7 7.1747	0.18/0308	
70	Pipe	1,90	/ /.1/4/	0.0012509	
71	Pipe	1,90	7 7.1747	1.0153057	
72	Pipe	1,90	7 7.1747	0.1076269	
75	Pipe	1,90	7 7.1747	0.1070300	
75	Pipe	1,90	7 7 1747	1.0153057	
70	Pine	1,90	7 7 1747	0.0625456	
78	Pine	1,50	7 7 1747	0.1876368	
79	Pipe	1,90	7 6 7438	0 7384383	
80	Pipe	1,00	7 7 1747	0.0012506	
81	Pipe	1,90	7 7 1747	1 0153057	
82	Pipe	1,00	7 7 1747	0.0625456	
83	Pipe	1,00	7 7 1747	0 1876368	
84	Pipe	1.90	7 6.7438	0.7384382	
85	Pipe	,	0.0000	0.0000000	
86	Pipe		0.0000	0.0000000	
87	Pipe		0.0000	0.0000000	
88	Pipe		0.0000	0.0000000	
89	Pipe		0.0000	0.0000000	
90	Pipe		0.0000	0.0000000	
91	Pipe		0.0000	0.0000000	
92	Pipe		0.0000	0.0000000	
93	Pipe		0.0000	0.0000000	
94	Pipe		0.0000	0.0000000	
95	Well 7/8 to Well 9 - 20" HDPE DR13.5	3,81	5.4816	6.7269729	
96	Well 9 to Well 10 - 24" HDPE DR13.5	5,72	5.7099	11.3314816	
98	Well 12 to Desalter - 36" HDPE DR13.	5 7,62	3.3835	1.3247180	
100	Well 10/11 to Well 12 - 36" HDPE DR1	3.5 7,62	3.3835	2.3098418	
101	Well 7 to Well 8 Blend - 12" HDPE DR	13.5 1,90	6.7438	15.3665173	
102	Well 7 to Well 8 Blend - 12" HDPE DR	13.5 1,90	6.7438	13.5879313	
103	Well 10 to Well 11 - 30" HDPE DR13.5	7,62	4.8723	0.1024908	
104	Pipe	12,34	3.8921	0.8092790	
105	Pipe	3,08	3.8921	0.3487453	
106	Pipe	3,08	4.9259	1.1992354	

	Fathom 8 (Output) 5/30/2014 Page 9 CAROLLO\byallaly			
Pipe	Name	Vol. Flow Rate	Velocity	dH
		(gal/min)	(feet/sec)	(feet)
107	Pipe	0	0.0000	0.0000000
108	Pipe	9,261	2.9191	0.0074305
109	Pipe	3,087	3.8921	0.3487453
110	Pipe	3,087	4.9259	1.1992354
111	Pipe	3,087	0.9730	0.0009715
112	Pipe	6,174	1.9460	0.0035069
113	Pipe	3,087	3.8921	0.3487453
114	Pipe	3,087	4.9259	1.1992354
115	Pipe	6,174	1.9460	0.0035069
116	Pipe	0	0.0000	0.0000000
117	Pipe	3,087	0.9730	0.0009715
118	Pipe	3,087	3.8921	0.3487453
119	Pipe	3,087	4.9259	1.1992354
120	Pipe	9,261	2.9191	0.0074305
121	Pipe	0	0.0000	0.0000000
122	Pipe	12,348	3.8921	0.0126588
123	Pipe	0	0.0000	0.0000000
124	Pipe	0	0.0000	0.0000000

Fathom 8 (Output) 5/30/2014 Page 10 CAROLLO\byallaly	

All Junction Table

Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (lbm/sec)	Loss Factor (K)	dH (feet)
5	PTP Connection	3,926	544.9	0.0000	0.0000
6	PVCWD Connection	8,422	1,169.0	0.0000	0.0000
7	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
24	Reservoir	1,907	264.7	0.0000	0.0000
25	Well No. 1	1,907	264.7	0.0000	-226.3566
26	Check Valve	1,907	264.7	0.4672	0.3738
27	Valve	1,907	264.7	0.8328	0.6662
28	Branch	1,907	264.7	0.0000	0.0000
29	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
30	Reservoir	1,907	264.7	0.0000	0.0000
31	Well No. 2	1,907	264.7	0.0000	-200.9423
32	Check Valve	1,907	264.7	0.4672	0.3738
33	Valve	1,907	264.7	0.8328	0.6662
34	Branch	1,907	264.7	0.0000	0.0000
35	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
36	Reservoir	1,907	264.7	0.0000	0.0000
37	Well No. 3	1,907	264.7	0.0000	-189.9314
38	Check Valve	1,907	264.7	0.4672	0.3738
39	Valve	1,907	264.7	0.8328	0.6662
40	Branch	1,907	264.7	0.0000	0.0000
41	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
42	Reservoir	1,907	264.7	0.0000	0.0000
43	Well No. 4	1,907	264.7	0.0000	-180.0939
44	Check Valve	1,907	264.7	0.4672	0.3738
45	Valve	1,907	264.7	0.8328	0.6662
46	Branch	1,907	264.7	0.0000	0.0000
47	Reservoir	0	0.0	0.0000	0.0000
X48	Well No. 5	0	0.0	0.0000	N/A
49	Check Valve	0	0.0	0.0000	0.0000
50	Valve	0	0.0	0.0000	0.0000
51	Branch	0	0.0	0.0000	0.0000
52	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
53	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
54	Reservoir	1,907	264.7	0.0000	0.0000
55	Well No. 6	1,907	264.7	0.0000	-194.3068
56	Check Valve	1,907	264.7	0.4672	0.3738
57	Valve	1,907	264.7	0.8328	0.6662

	Fathom 8 (Output) 5/30/2014 Page 11 CAROLLO\byallaly				
	Name	Vol Flow	Mass Flow	Loss Factor (K)	dH
Jct		Rate Thru Jct (gal/min)	Rate Thru Jct (Ibm/sec)		(feet)
58	Branch	1,907	264.7	0.0000	0.0000
59	Bend	1,907	264.7	0.1908	0.1348
60	Pressure Entering Desalter	N/A	N/A	0.0000	0.0000
61	Reservoir	1,907	264.7	0.0000	0.0000
62	Well No. 7	1,907	264.7	0.0000	-209.8959
63	Check Valve	1,907	264.7	0.4672	0.3738
64	Valve	1,907	264.7	0.8328	0.6662
65	Branch	1,907	264.7	0.0000	0.0000
66	Reservoir	1,907	264.7	0.0000	0.0000
67	Well No. 8	1,907	264.7	0.0000	-211.6745
68	Check Valve	1,907	264.7	0.4672	0.3738
69	Valve	1,907	264.7	0.8328	0.6662
70	Branch	1,907	264.7	0.0000	0.0000
71	Reservoir	1,907	264.7	0.0000	0.0000
72	Well No. 9	1,907	264.7	0.0000	-190.5735
73	Check Valve	1,907	264.7	0.4672	0.3738
74	Valve	1,907	264.7	0.8328	0.6662
75	Branch	1,907	264.7	0.0000	0.0000
76	Reservoir	1,907	264.7	0.0000	0.0000
77	Well No. 10	1,907	264.7	0.0000	-179.0197
78	Check Valve	1,907	264.7	0.4672	0.3738
79	Valve	1,907	264.7	0.8328	0.6662
80	Branch	1,907	264.7	0.0000	0.0000
81	Reservoir	0	0.0	0.0000	0.0000
X82	Well No. 11	0	0.0	0.0000	N/A
83	Check Valve	0	0.0	0.0000	0.0000
84	Valve	0	0.0	0.0000	0.0000
85	Branch	0	0.0	0.0000	0.0000
86	Reservoir	0	0.0	0.0000	0.0000
X87	Well No. 12	0	0.0	0.0000	N/A
88	Check Valve	0	0.0	0.0000	0.0000
89	Valve	0	0.0	0.0000	0.0000
90	Branch	0	0.0	0.0000	0.0000
91	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
92	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
93	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
94	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
95	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
96	Reservoir	12,348	1,713.9	0.0000	0.0000
97	Pump	3,087	428.5	0.0000	-117.8860

	Fathom 8 (Output) 5/30/2014 Page 12 CAROLLO\byallaly				
Jct	Name	Vol. Flow Rate Thru Jct (gal/min)	Mass Flow Rate Thru Jct (Ibm/sec)	Loss Factor (K)	dH (feet)
98	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
99	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
100	Pump	3,087	428.5	0.0000	-118.3712
101	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
102	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
103	Pump	3,087	428.5	0.0000	-117.7742
104	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
105	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
106	Dead End	0	0.0	0.0000	0.0000
107	Pump	3,087	428.5	0.0000	-118.4700
108	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
109	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
X110	Pump	0	0.0	0.0000	N/A
111	Tee or Wye	N/A	N/A	See Mult. Losses	See Mult. Losses
112	Tee or Wye	N/A	N/A	See Mult. Losses	0.0000
113	Dead End	0	0.0	0.0000	0.0000

Technical Memorandum No. 1

APPENDIX B – SCALE INHIBITOR PROJECTIONS

Project Details

Project:South Oxnard Plain DesalterPermeate Flowrate:6180USGPM This is split into 5 trains of 1236.0USGPMSystem Recovery:80%

Antiscalant

Vitec 4000 is the selected product at a dose of 3.00mg/l. Assuming the plant operates continuously, then this will require 101385lb of antiscalant per year. This may be supplied in 41 x 2500lb Totes, 203 x 500lb Drums, or 2253 x 45lb Pails.

Chemical Cleaning

The chemical cleaning calculation has not been completed for this project.

Biocide

No biocide has been selected for this system. It is always recommended that a biocide injection point be included to allow for the retrofit of a biocide system at a later date.

Coagulant

No coagulant has been selected for this system. It is always recommended that a coagulant injection point be included to allow for the retrofit of a coagulant system at a later date.

Dechlorination

No dechlorination has been selected for this system.

Project Details

Project:	South Oxnard Plain Desalter
Permeate Flowrate:	6180USGPM This is split into 5 trains of 1236.0USGPM
System Recovery:	80%

Antiscalant Projection

The projection is based on the following feed water analysis. The adjusted feed is the analysis after pH correction, and any ions have been added to balance the analysis. The concentrate analysis has been calculated based on the adjusted feed, using typical rejections of a High Rejection polyamide membrane.

lon	Feed Water	Adjusted Feed	Concentrate	
Sodium	1077.00	1078.66	5342.96 mg/l	
Potassium	19.10	19.10	94.35 mg/l	
Calcium	810.00	810.00	4044.13 mg/l	
Magnesium	303.00	303.00	1512.32 mg/l	
Iron	0.00	0.00	0.00 mg/l	
Manganese	-0.00	0.00	0.00 mg/l	
Barium	0.04	0.04	0.20 mg/l	
Strontium	4.80	4.80	23.97 mg/l	
Aluminium	0.00	0.00	0.00 mg/l	
Chloride	32 <mark>57.00</mark>	3 <mark>257</mark> .00	16148.71 mg/l	
Sulfate	855.00	<mark>901</mark> .96	4503.28 mg/l	
Bicarbonate	1 <mark>9</mark> 3.00	133.75	657.33 mg/l	
Nitrate 🤇	1.20	1.20	5.76 mg/l	
Fluoride	0.40	0.40	1.98 mg/l	
Phosphate —	0.00	0.00	0.00 mg/l	
Silica	31.70	31.70	157.12 mg/l	
CO2 🦰	22.21	82.65	82.65 mg/l	
TDS		6541.61	32492.11	
pH	7.13	6.40	7.09	

Water Source: Well Water

Water Temperature: 18.9º C

Product Choice		Application
Vitec Choice:	Vitec 4000	Dosed Solution Strength: 100%
Dosage:	3.00mg/l	Pump Rate: 28.98USGPD
Usage:	277.77 lb per day.	76.24ml/m
There is one dosing With 5 trains, each p	pump and chemical tank per pump will deliver 5.80USGPD	membrane train.

pH Correction

Chemical choice:	Sulfuric acid
Dosage:	47.45ppm 100% H2SO4

13 Naysmith Square, Houstoun Ind Estate Livingston, EH54 5GG, UK Phone: +44 131 449 6677 Fax: +44 131 449 5599

Project Details

Project:	South Oxnard Plain Desalter
Permeate Flowrate:	6180USGPM This is split into 5 trains of 1236.0USGPM
System Recovery:	80%

Scaling Potential.

Stiff and Davies Index (S&DI) The reject stream has a S&DI of 0.77. Vitec 4000 has a limit of 3.00 Calcium Carbonate Precipitation Potential (CCPP) The concentrate has a CCPP of 334mg/l. This is within the limits of Vitec 4000. Calcium Sulfate The concentrate has a calcium sulphate saturation of 319.94%. This is within the limits of Vitec 4000. Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Stional Stilica The concentrate has a scilcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.		
The reject stream has a S&DI of 0.77. Vitec 4000 has a limit of 3.00 Calcium Carbonate Precipitation Potential (CCPP) The concentrate has a CCPP of 334mg/l. This is within the limits of Vitec 4000. Calcium Sulfate The concentrate has a calcium sulphate saturation of 319.94%. This is within the limits of Vitec 4000. Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	Stiff and Davies Index (S&DI)	
Calcium Carbonate Precipitation Potential (CCPP) The concentrate has a CCPP of 334mg/l. This is within the limits of Vitec 4000. Calcium Sulfate The concentrate has a calcium sulphate saturation of 319.94%. This is within the limits of Vitec 4000. Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Silica The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate The concentrate has a magnesium hydroxide saturation of 0.00%.	The reject stream has a S&DI of 0.77. Vitec 4000 has a limit of 3.00	
The concentrate has a CCPP of 334mg/l. This is within the limits of Vitec 4000. Calcium Sulfate The concentrate has a calcium sulphate saturation of 319.94%. This is within the limits of Vitec 4000. Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate The concentrate has a magnesium hydroxide saturation of 0.00%.	Calcium Carbonate Precipitation Potential (CCPP)	
Calcium Sulfate The concentrate has a calcium sulphate saturation of 319.94%. This is within the limits of Vitec 4000. Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No obosphate was included in the feed water analysis.	The concentrate has a CCPP of 334mg/l. This is within the limits of Vitec 4000.	
The concentrate has a calcium sulphate saturation of 319.94%. This is within the limits of Vitec 4000. Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	Calcium Sulfate	
Barium Sulfate The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	The concentrate has a calcium sulphate saturation of 319.94%.	
The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000. Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	Barium Sulfate	
Strontium Sulfate The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	The concentrate has a barium sulphate saturation of 1200.50%. This is within the limits of Vitec 4000.	
The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000. Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	Strontium Sulfate	
Calcium Fluoride The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	The concentrate has a strontium sulphate saturation of 76.23%. This is within the limits of Vitec 4000.	
The concentrate has a calcium fluoride saturation of 370.84%. This is within the limits of Vitec 4000. Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	Calcium Fluoride	
Silica The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	The concentrate has a calcium fluoride saturation of 370.84%.	
The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000. Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	Silica	
Magnesium Hydroxide The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate No phosphate was included in the feed water analysis.	The concentrate has a silica level of 157.12mg/l. This is within the limits of Vitec 4000.	
The concentrate has a magnesium hydroxide saturation of 0.00%. Calcium Phosphate	Magnesium Hydroxide	
Calcium Phosphate	The concentrate has a magnesium hydroxide saturation of 0.00%.	
No phosphate was included in the feed water analysis.	Calcium Phosphate	
	No phosphate was included in the feed water analysis.	

While every effort has been made to ensure the accuracy of this program, no warranty, expressed or implied, is given as actual application of the products is outside the control of Avista Technologies.

140 Bosstick Blvd San Marcos, CA 92069 Phone: +1 (760) 744 0536 Fax: +1 (760) 744 0619

Project Details

Project: Permeate Flowrate: System Recovery: South Oxnard Plain Desalter 6180USGPM This is split into 5 trains of 1236.0USGPM 80%

Chemical choice: Dosage: Sulfuric acid 47.45ppm 100% H2SO4

140 Bosstick Blvd San Marcos, CA 92069 Phone: +1 (760) 744 0536 Fax: +1 (760) 744 0619 13 Naysmith Square, Houstoun Ind Estate Livingston, EH54 5GG, UK Phone: +44 131 449 6677 Fax: +44 131 449 5599

Project Details

Project:South Oxnard Plain DesalterPermeate Flowrate:6180USGPM This is split into 5 trains of 1236.0USGPMSystem Recovery:72%

Antiscalant

Vitec 4000 is the selected product at a dose of 5.20mg/l. Assuming the plant operates continuously, then this will require 195104lb of antiscalant per year. This may be supplied in 79 x 2500lb Totes, 391 x 500lb Drums, or 4336 x 45lb Pails.

Chemical Cleaning

The chemical cleaning calculation has not been completed for this project.

Biocide

No biocide has been selected for this system. It is always recommended that a biocide injection point be included to allow for the retrofit of a biocide system at a later date.

Coagulant

No coagulant has been selected for this system. It is always recommended that a coagulant injection point be included to allow for the retrofit of a coagulant system at a later date.

Dechlorination

No dechlorination has been selected for this system.

Project Details

Project:South Oxnard Plain DesalterPermeate Flowrate:6180USGPM This is split into 5 trains of 1236.0USGPMSystem Recovery:72%

Antiscalant Projection

The projection is based on the following feed water analysis. The adjusted feed is the analysis after pH correction, and any ions have been added to balance the analysis. The concentrate analysis has been calculated based on the adjusted feed, using typical rejections of a High Rejection polyamide membrane.

lon	Feed Water	Adjusted Feed	Concentrate	
Sodium	1615.00	1645.96	5835.01 mg/l	
Potassium	28.60	28.60	101.17 mg/l	
Calcium	1216.00	1216.00	4337.88 mg/l	
Magnesium	454.00	454.00	1619.16 mg/l	
Iron	0.00	0.00	0.00 mg/l	
Manganese	0.00	0.00	0.00 mg/l	
Barium	0.06	0.06	0.21 mg/l	
Strontium	7.20	7.20	25.68 mg/l	
Aluminium	0.00	0.00	0.00 mg/l	
Chloride	48 <mark>85.00</mark>	4 <mark>885</mark> .00	17330.94 mg/l	
Sulfate	1278.00	1 <mark>349</mark> .65	4814.65 mg/l	
Bicarbonate	369.00	<mark>278</mark> .71	981.97 mg/l	
Nitrate	2.00	2.00	6.92 mg/l	
Fluoride	0.60	0.60	2.13 mg/l	
Phosphate	0.00	0.00	0.00 mg/l	
Silica	47.50	47.50	168.48 mg/l	
CO2	41.48	133.69	133.69 mg/l	
TDS		9915.28	35224.20	
pH	7.13	6.50	7.06	

Water Source: Well Water

Water Temperature: 18.9º C

Product Choice		Application
Vitec Choice:	Vitec 4000	Dosed Solution Strength: 100%
Dosage:	5.20mg/l	Pump Rate: 55.78USGPD
Usage:	534.53 lb per day.	146.72ml/m
There is one dosing	pump and chemical tank per	membrane train.
With 5 trains, each p	ump will deliver 11.16USGPI	

pH Correction

Chemical choice: Dosage: Sulfuric acid 72.39ppm 100% H2SO4

140 Bosstick Blvd San Marcos, CA 92069 Phone: +1 (760) 744 0536 Fax: +1 (760) 744 0619 13 Naysmith Square, Houstoun Ind Estate Livingston, EH54 5GG, UK Phone: +44 131 449 6677 Fax: +44 131 449 5599

Project Details

Project:	South Oxnard Plain Desalter
Permeate Flowrate:	6180USGPM This is split into 5 trains of 1236.0USGPM
System Recovery:	72%

Scaling Potential.

Stiff and Davies Index (S&DI)	
The reject stream has a S&DI of 0.91. Vitec 4000 has a limit of 3.00	
Calcium Carbonate Precipitation Potential (CCPP)	
The concentrate has a CCPP of 556mg/l. This is within the limits of Vitec 4000.	
Calcium Sulfate	
The concentrate has a calcium sulphate saturation of 344.91%.	
Barium Sulfate	
The concentrate has a barium sulphate saturation of 1286.43%. This is within the limits of Vitec 4000.	
Strontium Sulfate	
The concentrate has a strontium sulphate saturation of 81.43%.	
Calcium Fluoride	
The concentrate has a calcium fluoride saturation of 443.81%.	
Silica	
The concentrate has a silica level of 168.48mg/l. This is within the limits of Vitec 4000.	
Magnesium Hydroxide	
The concentrate has a magnesium hydroxide saturation of 0.00%.	
Calcium Phosphate	
No phosphate was included in the feed water analysis.	

While every effort has been made to ensure the accuracy of this program, no warranty, expressed or implied, is given as actual application of the products is outside the control of Avista Technologies.

140 Bosstick Blvd San Marcos, CA 92069 Phone: +1 (760) 744 0536 Fax: +1 (760) 744 0619

Project Details

Project: Permeate Flowrate: System Recovery: South Oxnard Plain Desalter 6180USGPM This is split into 5 trains of 1236.0USGPM 72%

Chemical choice: Dosage: Sulfuric acid 72.39ppm 100% H2SO4

140 Bosstick Blvd San Marcos, CA 92069 Phone: +1 (760) 744 0536 Fax: +1 (760) 744 0619 13 Naysmith Square, Houstoun Ind Estate Livingston, EH54 5GG, UK Phone: +44 131 449 6677 Fax: +44 131 449 5599

Technical Memorandum No. 1

APPENDIX C – REVERSE OSMOSIS PERFORMANCE PROJECTIONS

Project Information:

Case-specific: Design Water Quality

System Details

Feed I	Flow to Stage 1		1545	5.04 gpm	Pass	1 Permeat	e Flow	1236.08 gpt	m	Osmotic	Pressure:		
Raw V	Water Flow to System	n	1545	5.04 gpm	Pass	1 Recover	y	80.00 %			Feed	55.98 ps	ig
Feed I	Pressure		263	8.30 psig	Feed	l Temperat	ure	18.9 C		Ce	oncentrate	268.00 ps	ig
Flow	Factor		0).85	Feed	1 TDS		6556.75 mg	ç/ 1		Average	e 161.99 ps	ig
Chem	. Dose (100% H2SO	4)	43	8.87 mg/l	Nun	nber of Ele	ments	336		Average	NDP	190.52 ps	ig
Total	Active Area	1.	34400	0.00 ft ²	Ave	rage Pass 1	Flux	13.24 gfc	1	Power		299.60 kV	N
Water	Classification: Well	Wate	r SDI	< 3						Specific	Energy	4.04 kV	Wh/kgal
				Feed	Feed	Recirc	Cone	c Conc	Perm	Avg	Perm	Boost	Perm
Stage	Element	#PV	#Ele	Flow	Press	Flow	Flow	/ Press	Flow	Flux	Press	Press	TDS
				(gpm)	(psig)	(gpm)	(gpm) (psig)	(gpm)	(gfd)	(psig)	(psig)	(mg/l)
1	BW30XFR-400/34i	32	7	1545.04	258.30	0.00	720.44	4 246.47	824.60	13.25	20.00	0.00	48.39
2	SW30ULE-400i	16	7	720.44	441.47	0.00	308.96	5 418.12	411.48	13.23	20.00	200.00	55.71

Pass Streams (mg/l as Ion)											
Nomo	Easd	A divisted Feed	Conce	entrate	Permeate						
Iname	reed	Adjusted reed	Stage 1	Stage 2	Stage 1	Stage 2	Total				
NH4+ + NH3	1.89	1.90	4.02	9.28	0.06	0.08	0.07				
K	19.10	19.10	40.64	94.29	0.28	0.36	0.31				
Na	1077.00	1077.00	2297.60	5337.74	10.58	14.93	12.03				
Mg	303.00	303.00	648.01	1509.50	1.57	1.17	1.43				
Ca	810.00	810.00	1732.43	4035.68	4.08	3.06	3.74				
Sr	4.80	4.80	10.27	23.92	0.02	0.02	0.02				
Ba	0.04	0.04	0.08	0.19	0.00	0.00	0.00				
CO3	0.80	0.14	0.99	8.97	0.00	0.00	0.00				
HCO3	246.00	192.72	408.45	934.97	3.55	3.49	3.53				
NO3	1.20	1.20	2.48	5.56	0.08	0.16	0.11				
Cl	3257.38	3257.40	6957.26	16183.66	24.88	29.67	26.48				
F	0.40	0.40	0.85	1.97	0.01	0.01	0.01				
SO4	812.00	854.97	1830.75	4267.51	2.44	1.13	2.01				
SiO2	31.70	31.70	67.90	157.39	0.07	0.72	0.28				
Boron	0.42	0.41	0.74	1.50	0.13	0.16	0.14				
CO2	16.07	54.93	55.35	59.11	54.63	55.79	55.01				
TDS	6567.69	6556.75	14005.96	32579.22	48.39	55.71	50.83				
pH	7.14	6.50	6.73	6.95	5.03	5.02	5.03				

*Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume any obligation or liability for results obtained or damages incurred from the application of this information. Because use conditions and applicable laws may differ from one location to another and may change with time, customer is responsible for determining whether products are appropriate for customer's use. FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infringement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

Case: 2

5/6/2014

ROSA 9.1 ConfigDB u399339_282

Reverse Osmosis System Analysis for FILMTEC[™] Membranes Project: UWCD South Oxnard Desal Feasibility Study Brandon C. Yallaly, Carollo Engineers, Inc.

Design Warnings

-None-

Solubility Warnings

Langelier Saturation Index > 0 Stiff & Davis Stability Index > 0 CaSO4 (% Saturation) > 100% BaSO4 (% Saturation) > 100% CaF2 (% Saturation) > 100% SiO2 (% Saturation) > 100% Antiscalants may be required. Consult your antiscalant manufacturer for dosing and maximum allowable system recovery.

Stage Details

Stage 1 Elemen	t Recovery	Perm Flow (gpm)	Perm TDS (mg/l)	Feed Flow (gpm)	Feed TDS (mg/l)	Feed Press (psig)
1	0.09	4.54	25.70	48.28	6556.75	258.30
2	0.10	4.29	30.57	43.74	7235.04	255.82
3	0.10	4.01	36.96	39.45	8017.87	253.65
4	0.11	3.72	45.50	35.44	8921.93	251.76
5	0.11	3.41	57.16	31.72	9963.56	250.13
6	0.11	3.07	73.38	28.31	11156.18	248.72
7	0.11	2.72	96.35	25.24	12505.96	247.51
Stage 2 Elemen	t Recovery	Perm Flow (gpm)	Perm TDS (mg/l)	Feed Flow (gpm)	Feed TDS (mg/l)	Feed Press (psig)
Stage 2 Elemen	t Recovery 0.11	Perm Flow (gpm) 5.14	Perm TDS (mg/l) 28.27	Feed Flow (gpm) 45.03	Feed TDS (mg/l) 14005.96	Feed Press (psig) 441.47
Stage 2 Elemen 1 2	t Recovery 0.11 0.12	Perm Flow (gpm) 5.14 4.70	Perm TDS (mg/l) 28.27 34.49	Feed Flow (gpm) 45.03 39.88	Feed TDS (mg/l) 14005.96 15808.82	Feed Press (psig) 441.47 436.17
Stage 2 Elemen 1 2 3	0.11 0.12 0.12	Perm Flow (gpm) 5.14 4.70 4.23	Perm TDS (mg/l) 28.27 34.49 42.90	Feed Flow (gpm) 45.03 39.88 35.18	Feed TDS (mg/l) 14005.96 15808.82 17917.93	Feed Press (psig) 441.47 436.17 431.70
Stage 2 Elemen 1 2 3 4	0.11 0.12 0.12 0.12 0.12	Perm Flow (gpm) 5.14 4.70 4.23 3.71	Perm TDS (mg/l) 28.27 34.49 42.90 54.51	Feed Flow (gpm) 45.03 39.88 35.18 30.95	Feed TDS (mg/l) 14005.96 15808.82 17917.93 20358.20	Feed Press (psig) 441.47 436.17 431.70 427.97
Stage 2 Elemen 1 2 3 4 5	t Recovery 0.11 0.12 0.12 0.12 0.12	Perm Flow (gpm) 5.14 4.70 4.23 3.71 3.18	Perm TDS (mg/l) 28.27 34.49 42.90 54.51 70.80	Feed Flow (gpm) 45.03 39.88 35.18 30.95 27.24	Feed TDS (mg/l) 14005.96 15808.82 17917.93 20358.20 23125.32	Feed Press (psig) 441.47 436.17 431.70 427.97 424.85
Stage 2 Elemen 1 2 3 4 5 6	t Recovery 0.11 0.12 0.12 0.12 0.12 0.12 0.11	Perm Flow (gpm) 5.14 4.70 4.23 3.71 3.18 2.64	Perm TDS (mg/l) 28.27 34.49 42.90 54.51 70.80 94.02	Feed Flow (gpm) 45.03 39.88 35.18 30.95 27.24 24.06	Feed TDS (mg/l) 14005.96 15808.82 17917.93 20358.20 23125.32 26168.21	Feed Press (psig) 441.47 436.17 431.70 427.97 424.85 422.23

Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume any obligation or liability for results obtained or damages incurred from the application of this information. Because use conditions and applicable laws may differ from one location to another and may change with time, customer is responsible for determining whether products are appropriate for customer's use. FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infringement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

ROSA 9.1 ConfigDB u399339_282 Case: 2 5/6/2014

ROSA Detailed Report

Scaling Calculations

	Raw Water	Adjusted Feed	Concentrate
pH	7.14	6.50	6.95
Langelier Saturation Index	0.64	-0.11	1.69
Stiff & Davis Stability Index	0.26	-0.49	0.69
Ionic Strength (Molal)	0.16	0.16	0.79
TDS (mg/l)	6567.69	6556.75	32579.22
HCO3	246.00	192.72	934.97
CO2	16.07	54.92	59.09
CO3	0.80	0.14	8.97
CaSO4 (% Saturation)	41.53	43.63	284.05
BaSO4 (% Saturation)	163.06	171.21	945.20
SrSO4 (% Saturation)	10.21	10.73	66.45
CaF2 (% Saturation)	17.23	17.23	2088.41
SiO2 (% Saturation)	28.10	26.45	138.52
Mg(OH)2 (% Saturation)	0.00	0.00	0.00

To balance: 0.00 mg/l Na added to feed.

Project Information:

Case-specific: Worst Case Water Quality

System Details

Feed	Flow to Stage 1		1716	5.39 gpm	Pass	1 Permeat	te Flow	1235.56 gpt	m	Osmotic	Pressure:		
Raw V	Water Flow to System	n	1716	5.39 gpm	Pass	1 Recover	ry	71.99 %			Feed	82.71 ps	sig
Feed	Pressure		308	8.80 psig	Feed	d Temperat	ure	18.9 C		С	oncentrate	287.47 ps	sig
Flow	Factor		().85	Feed	1 TDS		9836.29 mg	<u>;</u> /l		Average	185.09 ps	sig
Chem	. Dose (100% H2SO	4)	61	.25 mg/l	Nun	nber of Ele	ments	336		Average	NDP	200.47 ps	sig
Total	Active Area	1	34400	0.00 ft ²	Ave	rage Pass 1	Flux	13.24 gfd	1	Power		384.87 k ^v	W
Water	Classification: Well	Wate	r SDI	< 3						Specific	Energy	5.19 k	Wh/kgal
				Feed	Feed	Recirc	Cond	c Conc	Perm	Avg	Perm	Boost	Perm
Stage	Element	#PV	#Ele	Flow	Press	Flow	Flow	Press	Flow	Flux	Press	Press	TDS
				(gpm)	(psig)	(gpm)	(gpm)) (psig)	(gpm)	(gfd)	(psig)	(psig)	(mg/l)
1	BW30XFR-400/34i	32	7	1716.39	303.80	0.00	888.32	289.53	828.07	13.31	20.00	0.00	79.69
2	SW30ULE-400i	16	7	888.32	484.53	0.00	480.82	2 448.63	407.50	13.10	20.00	200.00	65.65

Pass Streams (mg/l as Ion)										
Nomo	Easd	A diusted Feed	Conce	entrate]	Permeate				
Iname	reed	Adjusted Feed	Stage 1	Stage 2	Stage 1	Stage 2	Total			
NH4+ + NH3	2.89	2.90	5.53	10.14	0.11	0.09	0.10			
K	28.60	28.60	54.82	100.92	0.47	0.43	0.46			
Na	1615.00	1615.02	3104.12	5719.93	17.57	17.59	17.58			
Mg	454.00	454.00	874.79	1615.02	2.59	1.36	2.18			
Ca	1216.00	1216.00	2343.21	4326.03	6.77	3.59	5.72			
Sr	7.20	7.20	13.87	25.61	0.04	0.02	0.03			
Ba	0.06	0.06	0.11	0.21	0.00	0.00	0.00			
CO3	1.64	0.30	1.71	8.35	0.00	0.00	0.00			
HCO3	369.00	295.47	563.84	1028.15	5.56	4.15	5.09			
NO3	2.00	2.00	3.72	6.70	0.15	0.22	0.17			
Cl	4885.05	4885.08	9400.38	17337.55	41.25	34.90	39.15			
F	0.60	0.60	1.15	2.12	0.01	0.01	0.01			
SO4	1218.00	1278.00	2465.59	4554.05	4.01	1.31	3.12			
SiO2	47.50	47.50	91.69	168.68	0.10	0.84	0.34			
Boron	0.62	0.62	1.03	1.72	0.19	0.20	0.19			
CO2	21.64	75.59	76.28	79.36	75.40	76.69	75.82			
TDS	9851.10	9836.29	18930.40	34913.28	79.69	65.65	75.05			
pH	7.14	6.50	6.69	6.86	5.08	4.95	5.04			

*Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume any obligation or liability for results obtained or damages incurred from the application of this information. Because use conditions and applicable laws may differ from one location to another and may change with time, customer is responsible for determining whether products are appropriate for customer's use. FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infringement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

Reverse Osmosis System Analysis for FILMTEC[™] Membranes Project: UWCD South Oxnard Desal Feasibility Study Brandon C. Yallaly, Carollo Engineers, Inc.

Design Warnings

-None-

Solubility Warnings

Langelier Saturation Index > 0 Stiff & Davis Stability Index > 0 CaSO4 (% Saturation) > 100% BaSO4 (% Saturation) > 100% CaF2 (% Saturation) > 100% SiO2 (% Saturation) > 100% Antiscalants may be required. Consult your antiscalant manufacturer for dosing and maximum allowable system recovery.

Stage Details

Stage 1 E	Element l	Recovery	Perm Flow (gpm)	Perm TDS (mg/l)	Feed Flow (gpm)	Feed TDS (mg/l)	Feed Press (psig)
	1	0.09	4.70	41.59	53.64	9836.29	303.80
	2	0.09	4.39	50.10	48.94	10776.70	300.92
	3	0.09	4.06	61.26	44.55	11832.71	298.38
	4	0.09	3.72	76.07	40.49	13012.56	296.14
	5	0.09	3.37	96.01	36.78	14320.40	294.16
	6	0.09	3.01	123.12	33.41	15752.95	292.42
	7	0.09	2.65	160.24	30.41	17297.51	290.89
Stage 2 E	Element I	Recovery	Perm Flow (gpm)	Perm TDS (mg/l)	Feed Flow (gpm)	Feed TDS (mg/l)	Feed Press (psig)
Stage 2 E	Element 1 1	Recovery 0.09	Perm Flow (gpm) 5.01	Perm TDS (mg/l) 37.66	Feed Flow (gpm) 55.52	Feed TDS (mg/l) 18930.40	Feed Press (psig) 484.53
Stage 2 E	Element I 1 2	Recovery 0.09 0.09	Perm Flow (gpm) 5.01 4.56	Perm TDS (mg/l) 37.66 44.81	Feed Flow (gpm) 55.52 50.51	Feed TDS (mg/l) 18930.40 20802.30	Feed Press (psig) 484.53 477.23
Stage 2 E	Element 1 1 2 3	Recovery 0.09 0.09 0.09	Perm Flow (gpm) 5.01 4.56 4.10	Perm TDS (mg/l) 37.66 44.81 53.92	Feed Flow (gpm) 55.52 50.51 45.96	Feed TDS (mg/l) 18930.40 20802.30 22861.05	Feed Press (psig) 484.53 477.23 470.84
Stage 2 E	Element I 1 2 3 4	Recovery 0.09 0.09 0.09 0.09	Perm Flow (gpm) 5.01 4.56 4.10 3.63	Perm TDS (mg/l) 37.66 44.81 53.92 65.64	Feed Flow (gpm) 55.52 50.51 45.96 41.86	Feed TDS (mg/l) 18930.40 20802.30 22861.05 25094.80	Feed Press (psig) 484.53 477.23 470.84 465.24
Stage 2 E	Element 1 1 2 3 4 5	Recovery 0.09 0.09 0.09 0.09 0.09	Perm Flow (gpm) 5.01 4.56 4.10 3.63 3.17	Perm TDS (mg/l) 37.66 44.81 53.92 65.64 80.89	Feed Flow (gpm) 55.52 50.51 45.96 41.86 38.22	Feed TDS (mg/l) 18930.40 20802.30 22861.05 25094.80 27474.39	Feed Press (psig) 484.53 477.23 470.84 465.24 460.32
Stage 2 E	Element I 1 2 3 4 5 6	Recovery 0.09 0.09 0.09 0.09 0.08 0.08	Perm Flow (gpm) 5.01 4.56 4.10 3.63 3.17 2.72	Perm TDS (mg/l) 37.66 44.81 53.92 65.64 80.89 100.83	Feed Flow (gpm) 55.52 50.51 45.96 41.86 38.22 35.05	Feed TDS (mg/l) 18930.40 20802.30 22861.05 25094.80 27474.39 29950.53	Feed Press (psig) 484.53 477.23 470.84 465.24 460.32 455.97

Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume any obligation or liability for results obtained or damages incurred from the application of this information. Because use conditions and applicable laws may differ from one location to another and may change with time, customer is responsible for determining whether products are appropriate for customer's use. FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infringement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

ROSA 9.1 ConfigDB u399339_282 Case: 1 4/24/2014

ROSA Detailed Report

Scaling Calculations

	Raw Water	Adjusted Feed	Concentrate
pH	7.14	6.50	6.86
Langelier Saturation Index	0.98	0.25	1.67
Stiff & Davis Stability Index	0.44	-0.29	0.65
Ionic Strength (Molal)	0.23	0.23	0.85
TDS (mg/l)	9851.10	9836.29	34913.28
HCO3	369.00	295.47	1028.15
CO2	21.64	75.58	79.34
CO3	1.64	0.30	8.35
CaSO4 (% Saturation)	67.32	70.49	307.34
BaSO4 (% Saturation)	248.26	259.84	1028.90
SrSO4 (% Saturation)	15.77	16.50	72.43
CaF2 (% Saturation)	58.19	58.19	2574.52
SiO2 (% Saturation)	42.11	39.63	146.85
Mg(OH)2 (% Saturation)	0.00	0.00	0.00

To balance: 0.02 mg/l Na added to feed.

Technical Memorandum No. 1

APPENDIX D – DETAILED O&M ESTIMATE

Carollo Engineers, Inc.

Unit Costs	
Power (\$/kWh):	\$0.125
Lime (slaked) (\$/lb):	\$0.20
Sulfuric Acid (\$/lb):	\$0.03
Scale Inhibitor (\$/lb):	\$0.95
Sodium Hypochlorite (\$/lb):	\$0.35
Membrane Elements - 8 inch diameter(\$/element):	\$500.00
Cartridge Filters (\$/filter):	\$12.00
Step 1 Cleaning Chemical Cost (\$/lb):	\$2.82
Step 2 Cleaning Chemical Cost (\$/lb):	\$3.16
Step 3 Cleaning Chemical Cost (\$/lb):	\$2.00
Plant Operating Factor:	0.98
11. II.A.	
Well 1	1001
Flowide (gpin): Displayed Llaad (ft):	1931
Districtinge Head (II):	ZZ0 75.0%
Fullip Enciency (%). Motor Efficiency (%):	01.0%
Motor Eniciency (%).	156.2
ουνει (τιμ). Σοιωσε (λιΜι	116.6
norational Factor	0.98
Yearly Power Usane (kWh/ur)-	1000848
Well 2	1000010
Flowrate (apm):	1931
Discharge Head (ft):	200
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	138.4
Power (kW):	103.2
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	885706
Well 3	1021
Flowide (gpii): Discharao Hoad (fi):	1931
Disciplinge riedu (ii). Dump Efficionau (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hn):	130.1
Power (kW):	97.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	832564
Well 4	
Flowrate (gpm):	1931
Discharge Head (fi):	194
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	134.2
Power (kW):	100.1
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	859135
WUII J	0
Flowiate (gpm): Discharge Head (#):	250
Discillige redu (I). Dirma Efficiancy (24):	75.0%
r unip Eniciency (%). Matar Efficiency (%):	94.0%
MULUI EIIICIEIICY (70). Power (hn)-	0.0
Power (kW)	0.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	0

Well 6	0
Provide (gpri). Discharee Head (ff):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	0
Flowrate (opm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	0
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Uperational Factor: Vearly Dewor Lleage (kWb/r):	0.98
Well 9	0
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (KW): Operational Easter:	0.0
Yearly Power Usage (kWh/yr)	0.98
Well 10	0
Flowrate (gpm):	0
Discharge Head (fl):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (np): Dower (hMA)	0.0
Diversional Factor	0.98
Yearly Power Usage (kWh/yr):	0
Well 11	
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%): Motor Efficiency (%):	75.0%
Power (hn)	0.0
Power (kW):	0.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	0
Well 12	0
Flowrate (gpm): Discharge Lland (#):	U 250
Discharge Head (II): Dumn Efficiency (%):	250 75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	0

RO Feed Pumps		
	Number of Pumps:	5.0
	Flowrate Per Pump (gpm)	: 1545
	Discharge Head (ft):	538
	Pump Efficiency (%):	75.0%
	Motor Efficiency (%):	94.0%
	Power (hp):	297.9
	Power (kW):	222.1
	Operational Factor:	0.98
	Yearly Power Usage Per Pump - Existing (kWh/yr)	: 1906855
	Total Yearly Power Usage (kWh/yr):	9534273
Primary RO Stage 2 B	oost Pumps	
, ,	, Number of Pumps:	5.0
	Flowrate Per Pump (gpm):	720
	Discharge Head (ft):	462
	Pump Efficiency (%):	74.0%
	Motor Efficiency (%):	94.0%
	Power (hp):	120.8
	Power (kW):	90.1
	Operational Factor:	0.98
	Yearly Power Usage Per Pump (kWh/yr)	: 773061
	Total Yearly Power Usage (kWh/yr)	3865307
Procuct Water Pumps	;	
	Total Number of Pumps:	2.0
	Flowrate Per Pump (gpm)	3090
	Discharge Head (ft):	155
	Pump Efficiency (%):	84.0%
	Motor Efficiency (%):	92.5%
	Power (hp):	155.7
	Power (kW):	116.1
	Operational Factor:	0.98
	Total Yearly Power Usage (kWh/yr):	1993010
Chemical Usage		
	Lime	
	Post Treatment (lbs/day):	4320.0
	Operating Factor:	0.98
	Total Lime Usage (lbs/yr):	1545247
	Sulfuric Acid	
	Primary Desal Usage (lb/day):	4082.4
	Operating Factor:	0.98
	Total Sodium Hypochlorite Usage (lb/yr):	1460285
	Scale Inhibitor	
	Primary Desal Usage (lbs/day):	278.3
	Operating Factor:	0.98
	Total Scale Inhibitor Usage (lbs/yr):	99565
	Sodium Hypochlorite	
	Finished Water Usage (lb/day):	371.1
	Operating Factor:	0.98
	Total Sodium Hypochlorite Usage (lb/yr):	132753

Cartridge Filters	
Number of Primary Desal Cartridge Filter Elements:	552
Replacement Events per Year:	3
Number of Filters Replaced Per Year:	1655
Membranes	
Primary Desal Flux Rate (gfd):	13.2
Membrane Area per Element (ft2):	400
Number of Primary Desal Membrane Elements:	1681
Replacement Events per Year:	0.2
Number of 8-in Membrane Elements Replaced Per Year:	336
Chemical Cleanings	
Primary RO	
Number of Trains to Clean Per Cleaning Event:	5.0
Number of Cleaning Steps Per Train:	3.0
Step 1 Solution Volume (gal):	3000
Step 1 Cleaning Solution Strength (% by wt.):	8.0%
Step 1 Cleaning Chemical Requirement (lbs):	2001.6
Step 2 Solution Volume (gal):	3000
Step 2 Cleaning Solution Strength (% by wt.):	4.0%
Step 2 Cleaning Chemical Requirement (lbs):	1000.8
Step 3 Solution Volume (gal):	3000
Step 3 Cleaning Solution Strength (% by wt.):	4.0%
Step 3 Cleaning Chemical Requirement (lbs):	1000.8
Step 1 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	10008.0
Step 2 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	5004.0
Step 3 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	5004.0
Number of Step 1 Cleaning Events Per Year:	3.0
Number of Step 2 Cleaning Events Per Year:	3.0
Number of Step 3 Cleaning Events Per Year:	4.0
Step 1 Cleaning Chemical Requirement Per Year (lbs):	30024
Step 2 Cleaning Chemical Requirement Per Year (lbs):	15012
Step 3 Cleaning Chemical Requirement Per Year (Ibs):	20016

Maintenance Costs		
	Miscellaneous Equipment and Building Maintenance (\$/yr):	\$150,000
	Annual Well Maintenance (\$/yr):	\$300,000
Laboratory Costs		
	Sample Analysis (\$/yr):	\$50,000
Concentrate Disposal Costs		** 004 000
	Usage @ \$/50/AF (\$/yr):	\$1,831,980
Labor Coat	Estimated Annual Concentrate Flow Measurement Station Costs (\$/yr):	\$45,000
Lador Cost	Number of Crode T2 Operators (No.)	2
	Number of Grade 12 Operators (No.):	3 \$72.404
	Allitudi 12 Operators (Ma): Number of Crade T1 Operators (Ma):	\$72,090
	Number of Grade TT Operators (No.):	۲ ۲۵ مار
	Annuar I T Operator Salary (\$/yr): Totol Daw Solary (\$/yr):	\$59,821
	Total Raw Salaty (\$/yt):	\$337,730
	Filige Percentage (%):	40%
	Administrative Cost Percentage (%): Total Labor Cost Per Voar (\$/w):	\$30% \$70 CCT\$
OPM Cost Summaria		\$752,074
Oaw Cost Summary.	Power	
	Percentage Adder for Misc Power (%):	2%
	Total Power Cost (\$/vr)	\$2 418 782
	Chemicals	\$2,110,702
	Lime	\$309.049
	Sulfuric Acid	\$43,809
	Scale Inhibitor	\$94 587
	Sodium Hypochlorite	\$46 464
	Sten 1 Cleaning	\$84,668
	Step 2 Cleaning	\$47.438
	Step 2 Cleaning	\$40.032
	Membranes	\$169,002
	Cartridae Filters	\$100,100
	Maintananco Costo	\$450,000
		\$400,000 \$400,000
	Concentrate Disposal Costs	\$30,000
	Labor	\$732.874
	Annual O&M Cost (\$/vr):	\$6 382 647
	Annual O&M Cost (\$/knah)	\$2 005
	Annual O&M Cost (\$/AF):	\$653
	Amortized Capital Cost	\$555
	Canital Cost (\$)	\$85 137 023
	Interest (%)	3 22%
	Life Span of Investment (vrs)	30
	Amortized Capital Cost (\$/vr)-	\$4 468 057
	Annual O&M Cost with Canital Recovery (\$/yr).	\$10 850 705
	Annual O&M Cost with Capital Recovery (\$/kgal):	\$3.408
	Annual O&M Cost with Capital Recovery (\$/AF):	\$1,111
	Annual O&M Cost with Capital Recovery (\$/kgal): Annual O&M Cost with Capital Recovery (\$/AF):	\$3.408 \$1,111

Carollo Engineers, Inc.

Unit Costs	
Power (\$/kWh):	\$0.125
Lime (slaked) (\$/lb):	\$0.20
Sulfuric Acid (\$/lb):	\$0.03
Scale Inhibitor (\$/lb):	\$0.95
Sodium Hypochlorite (\$/lb):	\$0.35
Membrane Elements - 8 inch diameter(\$/element)	\$500.00
Cartridge Eilters (\$/filter)	\$12.00
Step 1 Cleaning Chemical Cost (\$/lb):	\$2.82
Step 2 Cleaning Chemical Cost (\$11).	\$2.02
Step 2 Cleaning Chemical Cost (#hb).	\$3.10
Step 5 Cleaning Chemical Cost (\$hb).	\$2.00
Plant Operating Factor:	0.96
Well 1	
Wen T	1021
Flowide (gpii).	1931
Discharge Head (II):	220
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	156.3
Power (kW):	116.6
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	1000848
Well 2	
Flowrate (gpm):	1931
Discharge Head (ff):	200
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	138.4
Power (kW):	103.2
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	885706
Well 3	
Flowrate (gpm):	1931
Discharge Head (ft):	188
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	130.1
Power (kW):	97.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	832564
Well 4	
Flowrate (gpm):	1931
Discharge Head (ft):	194
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	134.2
Power (kW):	100.1
Operational Factor:	0.98
Yearly Power Usage (kWh/vr):	859135
Well 5	
Flowrate (apm):	1931
Discharne Head (ff)	211
Pumn Efficiency (%):	75.0%
Matar Efficiency (%).	94.0%
MOLOL ETHLEPTLY (70). Dowor (hn)-	1/6.0
rowci (iiµ). Dowci (iAM)	109.0
FOWER (NW). Operational Easter:	0.08
Uperativi Dowor Lisado (kMbhur)-	0.90
teany Power Usage (KWIN/I):	7044ZU

Well 6		
Flowrate (gpm):	1931	
Discharge Head (tt):	213	
Puttip Efficiency (%):	75.0%	
Power (hn):	147.3	
Power (kW):	109.9	
Operational Factor:	0.98	
Yearly Power Usage (kWh/yr):	943277	
Well 7		
Flowrate (gpm):	1931	
Discharge Head (tt):	191	
Pump Elliciency (%): Motor Efficiency (%):	75.0%	
Power (hn):	132.1	
Power (kW):	98.5	
Operational Factor:	0.98	
Yearly Power Usage (kWh/yr):	845849	
Well 8		
Flowrate (gpm):	1931	
Discharge Head (ft):	179	
Pump Efficiency (%):	/5.0%	
wotor Eindency (%): Dowor (hn)-	94.0% 123.8	
Power (kM)	92.3	
Operational Factor:	0.98	
Yearly Power Usage (kWh/yr):	792707	
Well 9		
Flowrate (gpm):	0	
Discharge Head (tt):	250	
Pump Eniciency (%): Motor Efficiency (%):	75.0%	
Power (hn):	0.0	
Power (kW):	0.0	
Operational Factor:	0.98	
Yearly Power Usage (kWh/yr):	0	
Well 10	_	
Flowrate (gpm):	0	
Discharge Head (II):	250	
Motor Efficiency (%).	94.0%	
Power (hp):	0.0	
Power (kW):	0.0	
Operational Factor:	0.98	
Yearly Power Usage (kWh/yr):	0	
Well 11	0	
Flowiale (gpm): Discharad Haar (ff):	250	
Pump Efficiency (%):	75.0%	
Motor Efficiency (%):	94.0%	
Power (hp):	0.0	
Power (KW):	0.0	
Operational Factor:	0.98	
reany Power Usage (KWN/yr): Well 12	U	
Flowrate (opm):	0	
Discharge Head (ft):	250	
Pump Efficiency (%):	75.0%	
Motor Efficiency (%):	94.0%	
Power (hp):	0.0	
Power (kW):	0.0	
Uperational Factor: Yearly Power Usane (kWh/ur)	0.98 N	
i cali y towei Usage (kwingi).	v	
RO Feed Pumps		
----------------------	--	----------
	Number of Pumps:	10.0
	Flowrate Per Pump (gpm):	1545
	Discharge Head (ft):	552
	Pump Efficiency (%):	75.0%
	Motor Efficiency (%):	94.0%
	Power (hp):	305.5
	Power (kW):	227.8
	Operational Factor:	0.98
	Yearly Power Usage Per Pump - Existing (kWh/yr):	1955958
	Total Yearly Power Usage (kWh/yr):	19559581
Primary RO Stage 2 B	oost Pumps	
, ,	Number of Pumps:	10.0
	Flowrate Per Pump (gpm):	655
	Discharge Head (ft):	508
	Pump Efficiency (%):	74.0%
	Motor Efficiency (%):	94.0%
	Power (hp):	120.8
	Power (kW):	90.1
	Operational Factor:	0.98
	Yearly Power Usage Per Pump (kWh/yr):	773598
	Total Yearly Power Usage (kWh/yr):	7735982
Procuct Water Pumps	, , , , ,	
	Total Number of Pumps:	4.0
	Flowrate Per Pump (gpm):	3090
	Discharge Head (ft):	123
	Pump Efficiency (%):	84.0%
	Motor Efficiency (%):	92.5%
	Power (hp):	123.5
	Power (kW):	92.1
	Operational Factor:	0.98
	Total Yearly Power Usage (kWh/yr):	3163100
Chemical Usage		
	Lime	
	Post Treatment (lbs/day):	8639.9
	Operating Factor:	0.98
	Total Lime Usage (lbs/yr):	3090495
	Sulfuric Acid	
	Primary Desal Usage (lb/day):	8164.9
	Operating Factor:	0.98
	Total Sodium Hypochlorite Usage (lb/yr):	2920570
	Scale Inhibitor	
	Primary Desal Usage (lbs/day):	556.7
	Operating Factor:	0.98
	Total Scale Inhibitor Usage (Ibs/yr):	199130
	Sodium Hypochlorite	
	Finished Water Usage (lb/day):	742.3
	Operating Factor:	0.98
	Total Sodium Hypochlorite Usage (lb/yr):	265506

Cartridge Filters	
Number of Primary Desal Cartridge Filter Elements:	1104
Replacement Events per Year:	3
Number of Filters Replaced Per Year:	3311
Membranes	
Primary Desal Flux Rate (gfd):	13.2
Membrane Area per Element (ft2):	400
Number of Primary Desal Membrane Elements:	3362
Replacement Events per Year:	0.2
Number of 8-in Membrane Elements Replaced Per Year:	672
Chemical Cleanings	
Primary RO	
Number of Trains to Clean Per Cleaning Event:	10.0
Number of Cleaning Steps Per Train:	3.0
Step 1 Solution Volume (gal):	3000
Step 1 Cleaning Solution Strength (% by wt.):	8.0%
Step 1 Cleaning Chemical Requirement (lbs):	2001.6
Step 2 Solution Volume (gal):	3000
Step 2 Cleaning Solution Strength (% by wt.):	4.0%
Step 2 Cleaning Chemical Requirement (lbs):	1000.8
Step 3 Solution Volume (gal):	3000
Step 3 Cleaning Solution Strength (% by wt.):	4.0%
Step 3 Cleaning Chemical Requirement (lbs):	1000.8
Step 1 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	20016.0
Step 2 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	10008.0
Step 3 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	10008.0
Number of Step 1 Cleaning Events Per Year:	3.0
Number of Step 2 Cleaning Events Per Year:	3.0
Number of Step 3 Cleaning Events Per Year:	4.0
Step 1 Cleaning Chemical Requirement Per Year (lbs):	60048
Step 2 Cleaning Chemical Requirement Per Year (lbs):	30024
Step 3 Cleaning Chemical Requirement Per Year (lbs):	40032

Maintenance Costs		
	Miscellaneous Equipment and Building Maintenance (\$/yr):	\$150,000
	Annual Well Maintenance (\$/yr):	\$600,000
Laboratory Costs		
	Sample Analysis (\$/yr):	\$50,000
Concentrate Disposal Costs		*****
	Usage @ \$750/AF (\$/yr):	\$3,663,960
Labor Coat	Estimated Annual Concentrate Flow Measurement Station Costs (\$/yr):	\$45,000
Labor Cost	Number of Crode T3 Operators (No.)	n
	Number of Grade 12 Operators (No.):	3 \$72.404
	Allitudi 12 Operators (Ma): Number of Crade T1 Operators (Ma):	\$72,090 C
	Number of Grade TT Operators (No.):	۲ ۲۵ مار
	Annual TT Operator Salary (\$/yt):	\$59,821
	Total Raw Salary (\$/yf):	\$337,730
	Filinge Percentage (%):	40%
	Administrative Cost Percentage (%): Total Labor Cost Per Voar (\$/w):	\$722 074
OPM Cost Summaria		\$732,074
Oaw Cost Summary.	Power	
	Percentage Adder for Misc Power (%):	2%
	Total Power Cost (\$/vr)	\$4 788 029
	Chemicals	+ .,. = = ,= = .
	Lime	\$618.099
	Sulfuric Acid	\$87.617
	Scale Inhibitor	\$189,173
	Sodium Hypochlorite	\$92.927
	Step 1 Cleaning	\$169.335
	Step 2 Cleaning	\$94,876
	Step 2 Cleaning	\$80.064
	Membranes	\$336,200
	Cartridge Filters	\$39,730
	Maintenance Costs	\$750,000
	Labotatory Costs	\$50,000
	Concentrate Disposal Costs	\$3 708 960
	Labor	\$732,874
	Annual O&M Cost (\$/yr):	\$11,737,885
	Annual O&M Cost (\$/kgal):	\$1.844
	Annual O&M Cost (\$/AF):	\$601
	Amortized Capital Cost	
	Capital Cost (\$):	\$147,965,936
	Interest (%):	3.22%
	Life Span of Investment (yrs):	30
	Amortized Capital Cost (\$/yr):	\$7,765,368
	Annual O&M Cost with Capital Recovery (\$/yr):	\$19,503,252
	Annual O&M Cost with Capital Recovery (\$/kgal):	\$3.063
	Annual O&M Cost with Capital Recovery (\$/AF):	\$998

Power (RivM): S0.20 Suffair: Acid (Sito): S0.03 Suffair: Acid (Sito): S0.03 Scala: Inhibitor (Sito): S0.03 Sodium Hypochtorie (Sito): S0.35 Membrane Elements: - S inch diameter (Sito): S0.20 Carring Filtors (Sith): S2.22 Site 2 Cleaning Chemical Cost (Sith): S2.20 Bitto Operation (Site): S2.20 Part Operating Factor 9.98 Well 7 Flowrate (gpm) 1717 Discharge Head (ft): S13.4 Power (M): 9.95 Operational Factor 0.98 Well 7 Flowrate (gpm) 133.4 Power (M): 9.95 0.99 Operational Factor 0.98 9.95 Well 2 Flowrate (gpm) 1717 Discharge Head (ft): 9.13.4 Power (M): 9.25 Well 3 Flowrate (gpm) 1717 10 10 1717 Discharge Head (ft): 9.13.4 Power (M): 9.20 1717 Well 4	Unit Costs	
Lime (slake) (Sh): 9303 Sulfuric Add (Sh): 9303 Scale inhiblur (Sh): 9303 Scale inhiblur (Sh): 9303 Membrane Elements - 8 inch diameter(Sietment): 950000 Carning Fittars (Shifter): 95200 Shen Chemial Cost (Sh): 95200 Shen Chemial Cost (Sh): 95200 Plant Operating Factor 10000 Plant Plant Operating Factor 10000 Plant Plant Operating Factor 10000 Plant Plant Operating Factor 10000 Plant Factor 100000 Plant Factor 100000 Plant Factor 100000 Plant Factor 100000 Plant Factor 100000 Plant Factor 100000 Plant Factor 100000 Plant Factor	Power (\$/kWh):	\$0.125
Sulfin, Add (Sh) 90.93 Social inhibit (Sk) 90.95 Social inhibit (Sk) 90.95 Membrane Elements - 6 inch diameter (Sk)ement) 95.000 Carting Filters (Sk)ement) 95.000 Step 2 Cleaning Chemical Cost (Sk) 92.82 Skep 2 Cleaning Chemical Cost (Sk) 92.00 Bitt Operations Factor 90.96 Well 1 Flowrate (gpm) 1717 Discharge Head (R) 2717 Discharge Head (R) 2717 Power (N) 90.95 Operational Factor 90.96 Well 1 Flowrate (gpm) 171.7 Discharge Head (R) 271.7 Power (N) 90.55 90.95 Operational Factor 90.96 Power (M) 171.7 Discharge Head (R) 171.7 <td>Lime (slaked) (\$/lb):</td> <td>\$0.20</td>	Lime (slaked) (\$/lb):	\$0.20
Scale Inhibitor (Sth) 90.95 Sodium Hypochtoric (Sth) 93.93 Membrane Elements - 8 inch diameter(Steiment) 8500.00 Carninge Filters (Sthter) 52.202 Step 1 Ceaning Chemical Cost (Sth) 53.16 Step 2 Cleaning Chemical Cost (Sth) 53.16 Step 3 Cleaning Chemical Cost (Sth) 93.16 Well 7 Flowrate (gm) 1717 Discharge Haad (Sther) 94.08 Well 7 Flowrate (gm) 1717 Discharge Haad (Sther) 94.08 Well 7 Flowrate (gm) 1717 Discharge Haad (Sther) 94.08 Well 7 Flowrate (gm) 1717 Discharge Head (Sther) 94.08 Well 7 Flowrate (gm) 1717 Discharge Head (Sther) 1717 Discha	Sulfuric Acid (\$/lb):	\$0.03
Solium Hypochotic (90b) 90.35 Membrane Elements - 8 inch diameter (Selemont) 5500.00 Cartridge Flines (Selemont) 512.00 Step 1 Cleaning Chemical Cost (Stb) 52.82 Step 2 Cleaning Chemical Cost (Stb) 52.00 Plant Operating Factor (Stb) 52.00 Power (Step Cleaning Chemical Cost (Stb) 52.11 Well 2 Power (Step Cleaning Chemical Cost (Stb) Well 2 Flowrate (gpm) Well 3 Flowrate (gpm) Well 4 Flowrate (gpm) <td>Scale Inhibitor (\$/lb):</td> <td>\$0.95</td>	Scale Inhibitor (\$/lb):	\$0.95
Membrane Elements - 8 incl diamiter (Velement) Carritige Filters (Sillie) St200 S1200 S1200 Step 1 Cleaning Chemical Cosi (Sib) S2.82 Step 2 Cleaning Chemical Cosi (Sib) S2.00 Step 2 Cleaning Chemical Cosi (Sib) S2.00 Plant Operating Factor 0.98 Well 7 Flowrate (gm) Plant Operating Factor 0.98 Well 7 Flowrate (gm) Well 7 Flowrate (gm) Power (WP) 99.5 Operational Factor 0.98 Well 2 Flowrate (gm) Well 2 Flowrate (gm) Well 3 Flowrate (gm) Well 4 Flo	Sodium Hypochlorite (\$/lb):	\$0.35
Carritidge Filters (SHiller) \$12.00 Site 1 Cleaning Chemical Cost (Shb) \$3.16 Site 2 Cleaning Chemical Cost (Shb) \$3.16 Site 3 Cleaning Chemical Cost (Shb) \$3.16 Well 7 Flowrate (gpm) Power (high) 1717 Discharge Head (th) 217 Power (high) 94.0% Power (high) 95.0% Motor Efficiency (%) 94.0% Power (high) 120.5	Membrane Elements - 8 inch diameter(\$/element)	\$500.00
Step 1 Cleaning Chemical Cost (Sth): S2.82 Step 2 Cleaning Chemical Cost (Sth): S2.00 Step 3 Cleaning Chemical Cost (Sth): S2.00 Plant Operating Factor 0.98 Well 1 Flowrate (gm) 1717 Discharge Head (10) 217 Pump Efficiency (%) 94.0% Power (htt): 133.4 Power (htt): 133.4 Power (htt): 133.4 Power (htt): 133.4 Power (htt): 854214 Well 2 Flowrate (gm): 1717 Discharge Head (10) 196 94.0% Power (htt): 854214 94.0% Well 2 Flowrate (gm): 1717 Discharge Head (10) 196 94.0% Power (htt): 85.27 75.0% Well 3 Flowrate (gm): 1717 Discharge Head (10) 196 94.0% Power (htt): 89.9 0 Operational Factor 0.98 94.0% Power (htt): 1717 15.0 <td>Cartridge Eilters (\$/filter)</td> <td>\$12.00</td>	Cartridge Eilters (\$/filter)	\$12.00
Well 7 State 2) Cleaning Chemical Cosi (Sbb) \$3.16 Step 2) Cleaning Chemical Cosi (Sbb) \$3.06 Well 7 Flowrate (gm) 1717 Discharge Head (th) 217 Pomp Efficiency (%) 75.0% Motor Efficiency (%) 94.0% 217 Power (bried) 13.4 Power (bried) 13.4 Power (bried) 13.4 9.95 9.95 Operational Factor 0.98 9.95 9.95 Vearty Power Usage (kWhyr) 95.54 9.95 9.95 Well 2 Flowrate (gm) 1717 10.55 9.98 9.95 Well 3 Flowrate (gm) 1717 10.55 9.90 9.91 10.55 Well 3 Flowrate (gm) 1717 10.55 9.90 9.91 10.55 Well 3 Flowrate (gm) 1717 10.55 9.90 9.91 10.55 Well 4 Flowrate (gm) 1717 10.55 9.90 10.50 10.50 10.50 10.50 10.50 10.50 <td< th=""><td>Step 1 Cleaning Chemical Cost (\$/lb):</td><td>\$2.82</td></td<>	Step 1 Cleaning Chemical Cost (\$/lb):	\$2.82
Well 1 32.00 Step 3 Cleaning Chemical Cost (Mb): 52.00 Plant Operating Factor 0.98 Well 1 Flowrate (gam): 217 Pump Efficiency (%): 94.0% Power (hb): 133.4 Power (hb): 132.1 Well 2 Flowrate (gam): Well 2 Flowrate (gam): Well 3 Flowrate (gam): Vearly Power Usage (kWhy): 7771549 Well 3 Flowrate (gam): Vearly Power Usage (kWhy): 7771549 Well 4 Flowrate (gam): Well 5 Flowrate (gam): Vearly Power Usage (kWhy): 7771549 Well 4 Flowrate (gam): Well 5 Flowrate (gam): Vearly Power Usage (kWhy): 771569 Well 6	Step 2 Cleaning Chemical Cost (\$1b).	\$2.02
Well 1 9.00 9.00 Well 1 Flowrate (gm?) 1717 Discharge Head (1) 217 171 Discharge Head (1) 217 171 Discharge Head (1) 217 99.05 Motor Efficiency (%): 75.0% Motor Efficiency (%): 99.05 Operational Factor: 0.98 Vearly Power (Voi): 98.25214 Well 2 Flowrate (gm?): 1717 Discharge Head (1): 196 Power (Voi): 94.0% 1717 Discharge Head (1): 196 1717 Discharge Head (1): 1717 101 Bischarge Head (1): 1717 171549 Well 3 Flowrate (gm?): 1717 Discharge Head (1): 1717 150 Power (Voi): 85.7 098 Querational Factor: 0.98 175.0% <td>Step 2 Cleaning Chemical Cost (\$1b).</td> <td>\$3.10</td>	Step 2 Cleaning Chemical Cost (\$1b).	\$3.10
Well 1 Flowrate (gm) 1717 Discharge Head (fi) 217 Pump Efficiency (%): 94.0% Mote Efficiency (%): 94.0% Power (fi): 133.4 Power (fi): 1717 Discharge Head (fi): 1717 D	Step 3 Creating Creating Cost (\$10):	\$2.00
well 1 Flowrate (gm) 1717 Discharge Head (ft) 217 Pump Efficiency (%) 75.0% Motor Efficiency (%) 94.0% Power (h0) 91.33.4 Power (h0) 99.5 Operational Factor 0.98 Vearly Power (seq (kMhy)) 554214 Flowrate (gm) 1717 Discharge Head (ft) 196 Power (k0) 99.5 Power (k0) 99.6% Power (k0) 10.5 Power (k0) 10.5 Power (k0) 10.5 Power (k0) 11.0 Power (k0) 11.5.0	Plant Operating Factor:	0.96
Head Flowrate (gpm) 1117 Discharge Head (%) 217 Pump Efficiency (%) 75.0% Motor Efficiency (%) 94.0% Power (W) 94.0% Power (W) 94.0% Power (W) 94.0% Power (W) 94.0% Well 2 0.98 Well 2 0.98 Well 2 1117 Discharge Head (%) 194.0% Power (W) 1117 Discharge Head (%) 94.0% Power (W) 89.9 Power (W) 89.9 Operational Factor 0.98 Yearly Power Usage (Why)? 771549 Well 3 Flowrate (gpm) 1117 Discharge Head (%) 1717 Discharge Head (%) 1717 Discharge Head (%) 1717 Power (%) 94.0% Yearly Power Usage (kWhy)? 736120 Well 4 Flowrate (gpm) 1115.0 Power (%) 94.0% 94.0% Yearly Power Usage (kWh	Well 1	
Instance Flow rate (graph 117 Discharge Head (ft) 217 Pump Efficiency (%) 55.0% Motor Efficiency (%) 94.0% Power (W) 99.5 Operational Factor 0.98 Yearly Power Usage (Why) 854214 """"""""""""""""""""""""""""""""""""	Wen T	1717
Well 2 217 Pump Efficiency (%): 94.0% Power (W): 99.5 Operational Factor: 0.98 Yearly Power Usage (Wh/y): 854214 Boware (W): 99.5 Operational Factor: 0.98 Yearly Power Usage (Wh/y): 854214 Boware (W): 97.50% Well 2 Flowrate (gm): 117.17 Discharge Head (ft): 196 Pump Efficiency (%): 975.0% Motor Efficiency (%): 75.0% Power (W): 89.9 Operational Factor: 0.98 Yearly Power Usage (Wh/y): 77.1549 Well 3 Flowrate (gm): 171.7 Discharge Head (ft): 117.17 Discharge Head (ft): 115.0 Power (W): 87.7 Operational Factor: 0.98 Yearly Power Usage (Wh/y): 735120 Well 4 Flowrate (gm): 117.17 Discharge Head (ft): 179 Power (W): 87.1 098 Year	Provide (gpri):	1/1/
Well 2 Plume Efficiency (%): 94.0% Well 2 Power (mp): 133.4 Power (mp): 94.5 Operational Factor 0.98 Yearly Power Usage (kWhly): 854214 854214 Well 2 Flowrate (gpm): 1717 Discharge Head (ft): 196 Pump Efficiency (%): 94.0% Power (kW): 854214 89.9 Operational Factor: 0.98 Well 3 Flowrate (gpm): 1717 Discharge Head (ft): 196 Power (kW): 89.9 Operational Factor: 0.98 Well 3 Flowrate (gpm): 1717 Discharge Head (ft): 1187 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWhly): 771549 Well 4 Flowrate (gpm): 11717 Discharge Head (ft): 1187 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power (kW): 85.7 Well 4 Flowrate (gpm): 117.0 Discharge Head (ft): 179 Pume Efficiency (%): 75.0% <td>Discharge Head (II):</td> <td>217</td>	Discharge Head (II):	217
Motor Efficiency (%) 94.0% Power (NW) 99.5 Operational Factor 0.98 Yearly Power Usage (WMVyr) 854214 Well 2 Flowrate (gpm) Well 2 Flowrate (gpm) Well 2 Flowrate (gpm) Well 3 Flowrate (gpm) Well 3 Power (NW) Well 3 Flowrate (gpm) Well 4 Flowrate (gpm) Well 3 Flowrate (gpm) Well 4 Flowrate (gpm) Well 5 Flowrate (gpm) Well 4 Flowrate (gpm) Well 5 Flowrate (gpm) Well	Pump Efficiency (%):	/5.0%
Power (thp) 133.4 Power (thW) 99.5 Operational Factor: 0.98 Yearly Power Usage (tWhVyr): 85.4214 Well 2 Flowrate (tgm) 1717 Discharge Head (t): 196 Power (two): 94.0% Power (two): 94.0% Power (two): 120.5 Power (two): 89.9 Operational Factor: 0.98 Power (two): 89.9 Operational Factor: 0.98 Power (two): 89.9 Operational Factor: 0.98 Power (two): 89.9 Well 3 Flowrate (gm): 171.7 Discharge Head (t): 187 Power (two): 89.9 Power (two): 80.0% Power (two): 85.7 Operational Factor: 0.98 Yearly Power Usage (twhv)r): 775.0% Molor Efficiency (%): 94.0% Power (two): 85.7 Operational Factor: 0.98 Yearly Power Usage (twhv)r): 736120 Well 4 Flowrate (gm): 171.7 Discharge Head (t): 179 </th <td>Motor Efficiency (%):</td> <td>94.0%</td>	Motor Efficiency (%):	94.0%
Power (kW) P0.5 Operational Factor 0.98 Yearly Power Usage (kWhyr) 854214 Flowrate (gm) 1717 Discharge Head (ft) 196 Pump Efficiency (%) 75.0% Motor Efficiency (%) 75.0% Motor Efficiency (%) 94.0% Power (kW) 89.9 Operational Factor 0.98 Yearly Power Usage (kWhyr) 771549 Well 3 Flowrate (gm) Well 3 Flowrate (gm) Well 4 Power (kW) Bischarge Head (ft) 187 Power (kW) 85.7 Operational Factor 0.98 Well 4 Power (kW) Bischarge Head (ft) 187 Power (kW) 85.7 Operational Factor 0.98 Yearly Power Usage (kWhyr) 7315.0 Power (kW) 85.7 Operational Factor 0.98 Yearly Power Usage (kWhyr) 7312.0 Well 4 Flowrate (gm) 1717 Discharge Head (f	Power (hp):	133.4
Operational Factor: 0.98 Yearly Power Usage (Whby): 854214 Flowrate (gpm): 7177 Discharge Head (ft): 196 Pump Efficiency (%): 94.0% Motor Efficiency (%): 94.0% Power (hp): 120.5 Power (hp): 1717 Discharge Head (ft): 187 Pump Efficiency (%): 94.0% Power (hp): 115.0 Power (hp): 117.7	Power (kW):	99.5
Weil 2 854214 Flowrate (gpm): 717 Discharge Head (ft): 196 Pump Efficiency (%): 94,0% Power (kW): 89.9 Operational Factor: 0.98 Yearly Power Usage (kWhy): 771549 Weil 3 Flowrate (gpm): Weil 3 Flowrate (gpm): Weil 4 Flowrate (gpm): Weil 3 Flowrate (gpm): Weil 4 Flowrate (gpm): Weil 3 Flowrate (gpm): Weil 4 Flowrate (gpm): Weil 5 75.0% Weil 4 Flowrate (gpm): Weil 5 75.0% Weil 6 117.7 Discharge Head (ft): 187 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 736120 Weil 4 Flowrate (gpm): 1717 Discharge Head (ft): 179 Pump Efficiency (%): 94.0% Power (kW): 82.1 Operational Factor: 0.98 <td>Operational Factor:</td> <td>0.98</td>	Operational Factor:	0.98
Well 2 Flowrate (gm) 1717 Discharge Head (lt) 196 Pump Efficiency (%): 94.0% Power (ht): 120.5 Power (ht): 1717 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 77.1549 Well 3 Flowrate (gpm): Veraty Power Usage (kWh/yr): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Power (ht): 115.0 Power (ht): 115.0 Power (ht): 115.0 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 736120 Well 4 Flowrate (gpm): 1717 Discharge Head (lt): 1717	Yearly Power Usage (kWh/yr):	854214
Flowrate (gpm): 1717 Discharge Head (ft): 196 Pump Efficiency (%): 94.0% Power (hy): 120.5 Power (hy): 120.5 Power (hy): 0.98 Yearly Power Usage (kWhlyn): 77.1549 Well 3 Flowrate (gpm): Well 3 Flowrate (gpm): Well 4 187 Pump Efficiency (%): 94.0% Power (hy): 17.17 Discharge Head (ft): 187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hy): 115.0 Power (hy): 115.0 Power (hy): 115.0 Power (hy): 736120 Well 4 Flowrate (gpm): Well 4 Flowrate (gpm): Well 5 75.0% Motor Efficiency (%): 94.0% Power (hy): 110.1 Power (hy): 1717 Discharge Head (ft): 1717 Discharge Head (ft): 1717 Discharge Head (ft): 1717 Power (hy): <t< th=""><td>Well 2</td><td></td></t<>	Well 2	
Discharge Head (ft): 196 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (ht): 120.5 Power (ht): 120.5 Power (ht): 69.9 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 77.1549 Well 3 Flowrate (gpm): Well 4 187 Pump Efficiency (%): 94.0% Power (ht): 115.0 Power (kt): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 70.0% Vearly Power Usage (kWhyr): <td>Flowrate (gpm):</td> <td>1717</td>	Flowrate (gpm):	1717
Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 120.5 Power (kW): 89.9 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 771549 Well 3	Discharge Head (ff):	196
Motor Efficiency (%): 94.0% Power (hp): 120.5 Power (kW): 89.9 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 771549 Well 3 Flowrate (gm): Bischarge Head (ft): 187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Well 4 Power (hp): 115.0 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 736120 Well 4 1717 Discharge Head (ft): 1717 175.0% Motor Efficiency (%): 75.0% Well 5 Flowrate (gpm): 110.1 Power (hp): 110.1 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 740628 1717 Discharge Head (ft): 110.1 Power (kW): 82.1 Operational Factor: 0.98 94.0%<	Pump Efficiency (%):	75.0%
Power (tp): 120.5 Power (tW): 99.9 Operational Factor: 0.98 Yearly Power Usage (kWh/y): 771549 Well 3 Flowrate (gpm): Flowrate (gpm): 1717 Discharge Head (ft): 187 Pump Efficiency (%): 94.0% Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 736120 Well 4 Flowrate (gpm): 111.0 Vearly Power Usage (kWh/yr): 736120 Well 5 Flowrate (gpm): 111.7 Discharge Head (ft): 177 Discharge Head (ft): 179 Pump Efficiency (%): 94.0% Well 5 Flowrate (gpm): 110.1 Power (kW): 82.1 0perational Factor: 0.98 Yearly Power Usage (kWh/yr): 7704628 179 Power (kW): 82.1 0.98 1717 Discharge Head (ft): 190 110.1 170 Power (kW): 82.1 0.98	Motor Efficiency (%):	94.0%
Power (W): 89.9 Operational Factor: 0.98 Yearly Power Usage (kUM/y): 771549 Well 3	Power (hp):	120.5
Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 771549 Well 3 - Flowrate (gpm): 1717 Discharge Head (ft): 187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 115.0 Power (hp): 115.0 Power (hp): 115.0 Power (hp): 736120 Well 4 - Well 4 - Well 4 - Well 5 - Well 4 - Well 5 - Well 6 - Well 7 - Well 8 - Well 5 - Well 5 - Well 5 - Well 5 - Well 6 - Well 7 - Well 7 - Well 7 - Well 8 - Well 7 - Well 7	Power (kW):	89.9
Well 3 771549 Well 3 Flowrate (gpm): 1717 Discharge Head (ft): Discharge Head (ft): 187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 115.0 Power (hp): 115.0 Power (hp): 105.0 Power (hp): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWhlyr): 736120 Well 4	Operational Factor:	0.98
Well 3 Flowrate (gpm) 1717 Discharge Head (ft) 187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 115.0 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 7360% Motor Efficiency (%): 747930	Yearly Power Usage (kWh/yr):	771549
Howrate (gpm): 1/17 Discharge Head (ft): 187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 115.0 Power (hp): 115.0 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 736120 Well 4 Flowrate (gpm): T177 Discharge Head (ft): 179 Pump Efficiency (%): Power (kW): 82.1 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Well 5 Flowrate (gpm): Well 5 Flowrate (gpm): T177 Discharge Head (ft): 190 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 T10.1 Power (kW): 82.1 0perational Factor: 0.98 Yearly Power Usage (kWh/yr): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% </th <td>Well 3</td> <td></td>	Well 3	
Discharge Head (ft): 1187 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 115.0 Power (hp): 115.0 Power (hp): 115.0 Power (hp): 098 Yearly Power Usage (kWh/yr): 736120 Well 4	Flowrate (gpm):	1717
Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (kV): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 736120 Well 4	Discharge Head (fi):	187
Motor Efficiency (%): 94.0% Power (ht): 115.0 Power (kW): 85.7 Operational Factor: 0.98 Yearly Power Usage (kWhyr): 736120 Well 4	Pump Efficiency (%):	75.0%
Power (hp); 115.0 Power (kW); 85.7 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 736120 Well 4 Flowrate (gpm); Flowrate (gpm); 1717 Discharge Head (ft); 179 Pump Efficiency (%); 75.0% Motor Efficiency (%); 94.0% Power (kW); 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 704628 Well 5 Flowrate (gpm); T177 Discharge Head (ft); 10.1 Power (kW); 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 704628 Well 5 Well 5 Flowrate (gpm); T177 Discharge Head (ft); 190 Pump Efficiency (%); Pump Efficiency (%); 75.0% Motor Efficiency (%); 94.0% Power (kW); 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 747930	Motor Efficiency (%):	94.0%
Power (kW); 85.7 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 736120 Well 4	Power (hp):	115.0
Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 736120 Well 4	Power (kW):	85.7
Yearly Power Usage (kWh/yr): 736120 Well 4 - Flowrate (gpm): 1717 Discharge Head (ft): 179 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (kW): 110.1 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Well 5 - Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Power (kW): 101.1 Power (kW): 101.1 Power (kW): 704628 Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Operational Factor:	0.98
Well 4 Flowrate (gm) 1717 Discharge Head (ft) 179 179 Discharge Head (ft) 75.0% 94.0% Motor Efficiency (%): 94.0% 110.1 Power (hp): 110.1 Power (hp): 110.1 Power (kW): 82.1 0.98 174 Vearly Power Usage (kWh/yr): 704628 1717 Discharge Head (ft): 190 1717 Discharge Head (ft): 190 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Power (hp): 116.8 Power (hp): 116.8 Power (hp): 116.8 Power (hp): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Yearly Power Usage (kWh/yr):	736120
Flowrate (gpm); 1717 Discharge Head (ft); 179 Pump Efficiency (%); 75.0% Motor Efficiency (%); 94.0% Power (hp); 110.1 Power (hp); 110.1 Power (kW); 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 704628 Well 5 Flowrate (gpm); Thormal (gpm); 1717 Discharge Head (ft); 190 Pump Efficiency (%); 75.0% Motor Efficiency (%); 75.0% Motor Efficiency (%); 75.0% Power (hp); 116.8 Power (hp); 116.8 Power (hp); 116.8 Power (kW); 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr); 747930	Well 4	
Discharge Head (ft) 179 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (KW) 82.1 Power (kW) 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Bischarge Head (ft): 170 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Flowrate (gpm):	1717
Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (%): 94.0% Power (kW): 110.1 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 75.0% Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Discharge Head (fi):	179
Motor Efficiency (%): 94.0% Power (hp): 110.1 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Bill 704628 Power (kW): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Pump Efficiency (%):	75.0%
Power (hp): 110.1 Power (kW): 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Well 5 Flowrate (gpm): Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Motor Efficiency (%):	94.0%
Power (kW) 82.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Well 5 Flowrate (gpm): T177 Discharge Head (ft): Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Power (hp):	110.1
Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 704628 Well 5 Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Power (kW):	82.1
Yearly Power Usage (kWh/yr): 704628 Well 5 Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kWh): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930 747930	Operational Factor:	0.98
Well 5 Flowrate (gpm): 1717 Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Yearly Power Usage (kWh/yr):	704628
Flowrate (gpm):1717Discharge Head (ft):190Pump Efficiency (%):75.0%Motor Efficiency (%):94.0%Power (hp):116.8Power (kW):87.1Operational Factor:0.98Yearly Power Usage (kWh/yr):747930	Well 5	
Discharge Head (ft): 190 Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Flowrate (gpm):	1717
Pump Efficiency (%): 75.0% Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Discharge Head (ft):	190
Motor Efficiency (%): 94.0% Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Pump Efficiency (%):	75.0%
Power (hp): 116.8 Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Motor Efficiency (%):	94.0%
Power (kW): 87.1 Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Power (hp):	116.8
Operational Factor: 0.98 Yearly Power Usage (kWh/yr): 747930	Power (kW):	87.1
Yearly Power Usage (kWh/yr): 747930	Operational Factor:	0.98
	Yearly Power Usage (kWh/yr):	747930

Well 6	
Flowrate (gpm):	0
Discharge Head (tt):	140
Pump Eliciency (%):	/5.0%
Motor Eniciency (%): Power (hp):	94.0%
Power (kM)	0.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	0
Well 7	
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (KW):	0.0
Operational Factor: Voarty Power Usago (kWb/ur):	0.96
Well 8	0
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Uperational Factor: Voarty Deword Lisage (k/M/b/r/)	0.98
reany Power Usage (kwiryr). Wall g	U
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Uperational Factor:	0.98
really Power Usage (kwirkyr).	U
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Operational Factor:	0.98
Yeariy Power Usage (kwn/yr): Well 11	U
Flowrate (opm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Uperational Factor: Voarty Dowor Lisago (k/Mb/ur):	0.98
Well 12	U
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Uperational Factor: Yearly Power Lisare (Wilhfur)-	U.98 0
i cariy r ower Usage (kwrityr).	v

Number of Pumps 5.0 Flowrate Per Pump (gpm): 1717 Discharge Head (ft): 644 Pump Efficiency (%): 90.0% Motor Efficiency (%): 94.0% Power (hp): 371.5 Power (kW): 277.1 Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (kWhiy): 2378453 Total Yearly Power Usage (kWhiy): 11892266 Primary RO Stage 2 Boost Pumps 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 74.0% Motor Efficiency (%): 74.0% Power (hp): 1148.9 Power (hp): 148.9 Po
Flowrate Per Pump (gpm): 1717 Discharge Head (ft): 644 Pump Efficiency (%): 80.0% Motor Efficiency (%): 94.0% Power (hp): 371.5 Power (kW): 277.1 Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 11892266 Primary RO Stage 2 Boost Pumps 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Motor Efficiency (%): 94.0% Primary RO Stage 2 Boost Pumps 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Motor Efficiency (%): 94.0% Power (hp): 1148.9 Power (hp): 148.9 Power (hp): 148.9 Power (hp): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 767212
Discharge Head (ft): 644 Pump Efficiency (%): 80.0% Motor Efficiency (%): 94.0% Power (hp): 371.5 Power (hp): 371.5 Power (hp): 277.1 Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 11892266 Primary RO Stage 2 Boost Pumps 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 74.0% Motor Efficiency (%): 74.0% Power (hp): 148.9 Power (hp): 148.9 Power (hy): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 7467212 Procuct Water Pumps 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 94.0%
Pump Efficiency (%): 880.0% Motor Efficiency (%): 94.0% Power (ttp): 371.5 Power (ttp): 371.5 Power (ttp): 277.1 Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (ktMtyr): 2378453 Total Yearly Power Usage (ktMtyr): 211892266 Primary RO Stage 2 Boost Pumps S.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (ktV): 111.1 Operational Factor: 0.98 Yearly Power Usage (ktMtyr): 95342 Total Yearly Power Usage (ktMtyr): 94.05 Procuct Water Pumps 2.0 Flowrate Per Pump (gpm): 3090 Discharg
Motor Efficiency (%): 94.0% Power (hp): 371.5 Power (kW): 277.1 Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 11892266 Primary RO Stage 2 Boost Pumps 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Motor Efficiency (%): 94.0% Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0 Power (kW): 117.0
Power (hp): Power (kW): 277.1 Operational Factor: 9.98 Yearly Power Usage Per Pump - Existing (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 700 Primary RO Stage 2 Boost Pumps Filowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Motor Efficiency (%): 94.0% Power (kW): 111.1 Operational Factor: 9953442 Total Yearly Power Usage (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 953442 Total Number of Pumps: 2.0 Filowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0
Power (kW): Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 2378453 Total Yearly Power of Pumps: Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Motor Efficiency (%): 7000000000000000000000000000000000000
Operational Factor: 0.98 Yearly Power Usage Per Pump - Existing (kWh/yr): 2378453 Total Yearly Power Usage (kWh/yr): 11892266 Primary RO Stage 2 Boost Pumps Number of Pumps: 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (hp): 148.9 Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 953442 Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0 Power (kW): 117.0
Yearly Power Usage Per Pump - Existing (kWh/yr): Total Yearly Power Usage (kWh/yr): Primary RO Stage 2 Boost Pumps Number of Pumps; Flowrate Per Pump (gpm): Ba88 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 82.0% Power (kW): 117.0 Power (kW): 117.0 Power (kW): 117.0 Power (kW): 117.0 Power (kW): 117.0 Power (kW): 117.0 Power (kW): 117.0
Total Yearly Power Usage (kWhlyr): Primary RO Stage 2 Boost Pumps Number of Pumps: Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 94.0% Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWhlyr): 953442 Total Yearly Power Usage (kWhlyr): 974.0% Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWhlyr): 975442 Total Yearly Power Usage (kWhlyr): 970 Yearly Power Usage (kWhlyr): 970 1155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0 0 or of the second Power (kW): 117.0
Primary RO Stage 2 Boost Pumps 5.0 Number of Pumps: 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0 Operational FEGICIENCY (%): 94.0% Power (kW): 117.0 Operational Power (kW): 117.0 Operational Power (kW): 117.0 Operational Power (kW): 117.0 Operational Power (kW): 117.0
Number of Pumps: 5.0 Flowrate Per Pump (gpm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (hp): 148.9 Power (hp): 148.9 Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0 Order Order
Flowrate Per Pump (gm): 888 Discharge Head (ft): 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 155.9 Power (kW): 156.9 Power (kW): 117.0
Discharge Hear (ft) 462 Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (tp): 148.9 Power (tw): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kUM)ry): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0 Operational Factor: 0.98
Pump Efficiency (%): 74.0% Motor Efficiency (%): 94.0% Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps (kWh/yr): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Motor Efficiency (%): 94.0% Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ff): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Power (hp): 148.9 Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Power (kW): 111.1 Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 1117.0
Operational Factor: 0.98 Yearly Power Usage Per Pump (kWh/yr): 953442 Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps 2.0 Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 82.0% Power (hp): 156.9 Power (kW): 117.0
Yearly Power Usage Per Pump (kWhlyr): Procuct Water Pumps Total Yearly Power Usage (kWhlyr): 4767212 Total Yearly Power Usage (kWhlyr): 700 101 102 102 102 102 102 102 102 102 1
Procuct Water Pumps Total Yearly Power Usage (kWh/yr): 4767212 Procuct Water Pumps Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (kW): 117.0 000
Procuct Water Pumps Total Number of Pumps: 2.0 Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Total Number of Pumps:2.0Flowrate Per Pump (gpm):3090Discharge Head (ft):155Pump Efficiency (%):82.0%Motor Efficiency (%):94.0%Power (hp):156.9Power (kW):117.0
Flowrate Per Pump (gpm): 3090 Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Discharge Head (ft): 155 Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Pump Efficiency (%): 82.0% Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Motor Efficiency (%): 94.0% Power (hp): 156.9 Power (kW): 117.0
Power (hp): 156.9 Power (kW): 117.0
Power (kW): 117.0
Uperational Factor: U 98
Total Yearly Power Usage (WMI/with 2009)41
Chemical Usage
Lime
Post Treatment (lbs/dav): 5418.5
Operating Eactor: 0.98
Total Line Usage (Ibs/vr): 1938197
Sulfuric Acid
Primary Desal Usage (lb/dav): 4536.0
Operating Factor: 0.98
Total Sodium Hypochlorite Usage (lb/vr): 1622539
Scale Inhibitor
Primary Desal Usage (lbs/dav): 5.36.1
Operating Factor: 0.98
Total Scale Inhibitor Usage (lbs/vr): 191755
Sodium Hypochlorite
Finished Water Usane (Ih/dau) 371 1
Onergina Eactor 0.98
Total Sodium Hypochlorite Usage (lb/vr): 132753

Cartidge Filters	
Number of Primary Desal Cartridge Filter Elements:	613
Replacement Events per Year:	3
Number of Filters Replaced Per Year:	1839
Membranes	
Primary Desal Flux Rate (gfd):	13.2
Membrane Area per Element (ft2):	400
Number of Primary Desal Membrane Elements:	1681
Replacement Events per Year:	0.2
Number of 8-in Membrane Elements Replaced Per Year:	336
Chemical Cleanings	
Primary RO	
Number of Trains to Clean Per Cleaning Event:	5.0
Number of Cleaning Steps Per Train:	3.0
Step 1 Solution Volume (gal):	3000
Step 1 Cleaning Solution Strength (% by wt.):	8.0%
Step 1 Cleaning Chemical Requirement (lbs):	2001.6
Step 2 Solution Volume (gal):	3000
Step 2 Cleaning Solution Strength (% by wt.):	4.0%
Step 2 Cleaning Chemical Requirement (lbs):	1000.8
Step 3 Solution Volume (gal):	3000
Step 3 Cleaning Solution Strength (% by wt.):	4.0%
Step 3 Cleaning Chemical Requirement (lbs):	1000.8
Step 1 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	10008.0
Step 2 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	5004.0
Step 3 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	5004.0
Number of Step 1 Cleaning Events Per Year:	3.0
Number of Step 2 Cleaning Events Per Year:	3.0
Number of Step 3 Cleaning Events Per Year:	4.0
Step 1 Cleaning Chemical Requirement Per Year (lbs):	30024
Step 2 Cleaning Chemical Requirement Per Year (lbs):	15012
Step 3 Cleaning Chemical Requirement Per Year (lbs):	20016

Maintenance Costs		
	Miscellaneous Equipment and Building Maintenance (\$/yr):	\$150,000
	Annual Well Maintenance (\$/yr):	\$300,000
Laboratory Costs		
	Sample Analysis (\$/yr):	\$50,000
Concontrato Dicnocal Casto		
Concentrate Disposar Costs	Lisane @ \$750/AF (\$/vr)-	\$2 849 747
	Estimated Annual Concentrate Flow Measurement Station Costs (\$/vr):	\$45,000
Labor Cost		\$10,000
	Number of Grade T2 Operators (No.):	3
	Annual T2 Operator Salary (\$/yr):	\$72,696
	Number of Grade T1 Operators (No.):	2
	Annual T1 Operator Salary (\$/yr):	\$59,821
	Total Raw Salary (\$/yr):	\$337,730
	Fringe Percentage (%):	40%
	Administrative Cost Percentage (%):	55%
	Total Labor Cost Per Year (\$/yr):	\$732,874
O&M Cost Summary:		
	Power	
	Percentage Adder for Misc Power (%):	2%
	Total Power Cost (\$/yr):	\$2,866,577
	<u>Chemicals</u>	
	Lime	\$387,639
	Sulfuric Acid	\$48,676
	Scale Inhibitor	\$182,167
	Sodium Hypochlorite	\$46,464
	Step 1 Cleaning	\$84,668
	Step 2 Cleaning	\$47,438
	Step 3 Cleaning	\$40,032
	<u>Membranes</u>	\$168,100
	Cartridge Filters	\$22,072
	Maintenance Costs	\$450,000
	Labotatory Costs	\$50,000
	Concentrate Disposal Costs	\$2,894,747
	<u>Labor</u>	\$732,874
	Annual O&M Cost (\$/yr):	\$8,021,454
	Annual O&M Cost (\$/kgal):	\$2.520
	Annual O&M Cost (\$/AF):	\$821
	Amortized Capital Cost	
	Capital Cost (\$):	\$85,137,023
	Interest (%):	3.22%
	Life Span of Investment (yrs):	30
	Amortized Capital Cost (\$/yr):	\$4,468,057
	Annual O&M Cost with Capital Recovery (\$/yr):	\$12,489,511
	Annual O&M Cost with Capital Recovery (\$/kgal):	\$3.923
	Annual O&M Cost with Capital Recovery (\$/AF):	\$1,278

Unit Costs	
Power (\$/k	kWh): \$0.125
Lime (slaked) ((\$/lb): \$0.20
Sulfuric Acid ((\$/lb): \$0.03
Scale Inhibitor ((\$/lb): \$0.95
Sodium Hypochlorite ((\$/lb): \$0.35
Membrane Elements - 8 inch diameter(\$/elen	ment): \$500.00
Cartridge Eithers (\$/f	filtor): \$12.00
Step 1 Cleaning Chemical Cost	(¢/lb), ¢2.00
Step 1 Cleaning Chemical Cost ((\$/ID). \$Z.0Z
Step 2 Cleaning Chemical Cost ((\$/ID): \$3.10
Step 3 Cleaning Chemical Cost ((\$/lb): \$2.00
Plant Operating Fa	actor: 0.98
Well 1	1007
Flowrate (g	gpm): 1907
Discharge Hea	ad (ft): 226
Pump Efficiency	y (%): 75.0%
Motor Efficiency	y (%): 94.0%
Power	r (hp): 154.4
Power	(kW): 115.1
Operational Fa	actor: 0.98
Yearly Power Usage (kW	/h/yr): 988492
Well 2	
Flowrate (c	gpm): 1907
Discharge Hea	ad (ft): 201
Pump Efficiency	y (%): 75.0%
Motor Efficiency	y (%): 94.0%
Power	r (hp): 137.3
Power	(kW): 102.4
Operational Fa	actor: 0.98
Yearly Power Usage (kW	/h/vr)· 879145
Well 3	
Flowrate (c	apm): 1907
Discharge Hea	ad (ft) 190
Pump Efficiency	(%) 75.0%
Motor Efficiency	y (%): 94.0%
Power	r (hn): 120.8
	(kM/) 06.8
	actor: 0.00
Operational Fa	aciui. U.90 /h//r/)- 001000
Tearry Fower Usage (KW	////yr). 031033
WVCII 4	(mm) 1007
	gp(1). 1907 ad (ft): 100
Discharge Hea	10 (II). 100 (0). 75 00/
Pump Efficiency	y (%): /5.0%
Motor Efficiency	y (70): 94.0%
Power	r (np): 123.0
Power	(KVV): 91.7
Operational Fa	actor: 0.98
Yearly Power Usage (kW	/h/yr): 787294
Well 5	
Flowrate (g	gpm): 1907
Discharge Hea	ad (tt): 194
Pump Efficiency	y (%): 75.0%
Motor Efficiency	y (%): 94.0%
Power	r (hp): 132.5
Power	(kW): 98.8
Operational Fa	actor: 0.98
Yearly Power Usage (kW	/h/yr): 848528

Well 6	
Flowrate (gpm):	1907
Discillative Redu (II): Dump Efficionau (%):	210
Matar Efficiency (%):	94.0%
Power (hp):	143.5
Power (kW):	107.0
Operational Factor:	0.98
Yearly Power Usage (kWh/yr):	918510
Well 7	
Flowrate (gpm):	1907
Discharge Head (ft):	212
Pump Efficiency (%):	75.0%
Motor Eniciency (%):	94.0%
Power (rp): Power (kM):	144.0
Operational Eactor:	0.98
Yearly Power Usage (kWh/yr):	927258
Well 8	
Flowrate (gpm):	1907
Discharge Head (ft):	191
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	130.5
Power (KW): Operational Easter:	97.3
Operational Factor. Voarby Power Lisage (k/Mb/ur):	935407
Well 9	055407
Flowrate (gpm):	1907
Discharge Head (ft):	179
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	122.3
Power (kw): Operational Easter:	91.2
Vearly Power Lisane (kWh/yr)-	782921
Well 10	102721
Flowrate (gpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
POWER (KW): Onorational Easter:	0.0
Uperational Eactor: Vearly Power Usage (kWh/ur)-	0.90
Well 11	0
Flowrate (qpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (KW): Operational Easter:	0.0
Vearly Power Lisane (kWh/yr):	0.96
Well 12	0
Flowrate (qpm):	0
Discharge Head (ft):	250
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	0.0
Power (kW):	0.0
Uperational Factor: Yearly Power Hsane (kWh/vr)•	0.98 N
roung rower Obdge (KWII/gr).	5

RO Feed Pumps	
Number of Pumps:	10.0
Flowrate Per Pump (gpm):	1717
Discharge Head (fl):	552
Pump Efficiency (%):	75.0%
Motor Efficiency (%):	94.0%
Power (hp):	339.5
Power (kW):	253.2
Operational Factor:	0.98
Yearly Power Usage Per Pump - Existing (kWh/yr):	2173287
Total Yearly Power Usage (kWh/yr):	21732868
Primary RO Stage 2 Boost Pumps	
Number of Pumps:	10.0
Flowrate Per Pump (gpm):	655
Discharge Head (ft):	508
Pump Efficiency (%):	74.0%
Motor Efficiency (%):	94.0%
Power (hp):	120.8
Power (kW):	90.1
Operational Factor:	0.98
Yearly Power Usage Per Pump (kWh/yr):	773598
Total Yearly Power Usage (kWh/yr):	7735982
Procuct Water Pumps	
Total Number of Pumps:	4.0
Flowrate Per Pump (gpm):	3090
Discharge Head (ft):	118
Pump Efficiency (%):	84.0%
Motor Efficiency (%):	92.5%
Power (hp):	118.5
Power (kW):	88.4
Operational Factor:	0.98
Total Yearly Power Usage (kWh/yr):	3034518
Chemical Usage	
Lime	
Post Treatment (lbs/day):	10837.0
Operating Factor:	0.98
Total Lime Usage (lbs/yr):	3876393
Sulfuric Acid	
Primary Desal Usage (lb/day):	9072.1
Operating Factor:	0.98
Total Sodium Hypochlorite Usage (lb/yr):	3245078
Scale Inhibitor	
Primary Desal Usage (lbs/day):	618.6
Operating Factor:	0.98
Total Scale Inhibitor Usage (Ibs/yr):	221255
Sodium Hypochlorite	
Finished Water Usage (lb/day):	742.3
Operating Factor:	0.98
Total Sodium Hypochlorite Usage (lb/yr):	265506

Cartidge Filters	
Number of Primary Desal Cartridge Filter Elements:	1226
Replacement Events per Year:	3
Number of Filters Replaced Per Year:	3679
Membranes	
Primary Desal Flux Rate (gfd):	13.2
Membrane Area per Element (ft2):	400
Number of Primary Desal Membrane Elements:	3362
Replacement Events per Year:	0.2
Number of 8-in Membrane Elements Replaced Per Year:	672
Chemical Cleanings	
Primary RO	
Number of Trains to Clean Per Cleaning Event:	10.0
Number of Cleaning Steps Per Train:	3.0
Step 1 Solution Volume (gal):	3000
Step 1 Cleaning Solution Strength (% by wt.):	8.0%
Step 1 Cleaning Chemical Requirement (lbs):	2001.6
Step 2 Solution Volume (gal):	3000
Step 2 Cleaning Solution Strength (% by wt.):	4.0%
Step 2 Cleaning Chemical Requirement (lbs):	1000.8
Step 3 Solution Volume (gal):	3000
Step 3 Cleaning Solution Strength (% by wt.):	4.0%
Step 3 Cleaning Chemical Requirement (lbs):	1000.8
Step 1 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	20016.0
Step 2 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	10008.0
Step 3 Cleaning Solution Usage Per Cleaning Event (lbs/cleaning):	10008.0
Number of Step 1 Cleaning Events Per Year:	3.0
Number of Step 2 Cleaning Events Per Year:	3.0
Number of Step 3 Cleaning Events Per Year:	4.0
Step 1 Cleaning Chemical Requirement Per Year (lbs):	60048
Step 2 Cleaning Chemical Requirement Per Year (lbs):	30024
Step 3 Cleaning Chemical Requirement Per Year (lbs):	40032

Maintenance Costs		
	Miscellaneous Equipment and Building Maintenance (\$/yr):	\$150,000
	Annual Well Maintenance (\$/yr):	\$600,000
Laboratory Costs		
	Sample Analysis (\$/yr):	\$50,000
Concentrate Disposal Costs		AF (00 404
	Usage @ \$/50/AF (\$/yf):	\$5,699,494
Labor Cost	Estimated Annual Concentrate Flow Measurement Station Costs (\$/yr):	\$45,000
	Number of Crade T2 Operators (No.)	2
	Number of Grade 12 Operators (No.).	5 \$72.404
	Number of Crade T1 Operators (No.):	\$72,090
	Number of Grade 11 Operators (No.).	¢E0.001
	Allitudi TT Operatori Salary (\$/yt): Tatal Daw Salary (\$/yt):	1 20,7C¢ ¢227 720
	I Oldi Rdw Sdidi y (\$/yi): Eringe Dereentere (%):	\$337,730
	Administrative Cast Decentage (%).	40 %
	Auffinitistiative Cost Percentage (%): Total Labor Cost Por Voar (\$/w):	\$732.974
O&M Cost Summary		\$732,074
oan cost sannary.	Power	
	Percentage Adder for Misc Power (%):	2%
	Total Power Cost (\$/vr):	\$5.138.500
	Chemicals	
	Lime	\$775.279
	Sulfuric Acid	\$97.352
	Scale Inhibitor	\$210,193
	Sodium Hypochlorite	\$92,927
	Step 1 Cleaning	\$169,335
	Step 2 Cleaning	\$94.876
	Step 3 Cleaning	\$80.064
	Membranes	\$336,200
	Cartridge Filters	\$44,144
	Maintenance Costs	\$750.000
	Labotatory Costs	\$50,000
	Concentrate Disposal Costs	\$5 744 494
	Labor	\$732,874
	Annual O&M Cost (\$/yr):	\$14,316,237
	Annual O&M Cost (\$/kgal):	\$2.248
	Annual O&M Cost (\$/AF):	\$733
	Amortized Capital Cost	
	Capital Cost (\$):	\$147,965,936
	Interest (%):	3.22%
	Life Span of Investment (yrs):	30
	Amortized Capital Cost (\$/yr):	\$7,765,368
	Annual O&M Cost with Capital Recovery (\$/yr):	\$22,081,605
	Annual O&M Cost with Capital Recovery (\$/kgal):	\$3.468
	Annual O&M Cost with Capital Recovery (\$/AF):	\$1,130

Technical Memorandum No. 1

APPENDIX E – DETAILED CAPITAL COST ESTIMATE

	Units	Unit Costs	Quantity	Cost
Drilled and Equipped Wells ¹	EA	\$2,500,000	6	\$15,000,000
North Wellfield Pipelines				
12" HDPE	LF	\$79	4550	\$359,450
20" HDPE	LF	\$136	3150	\$428,400
24" HDPE		\$167	2700	\$450,900
		\$ZZ9 ¢252	1350	\$309,150 \$254,200
South Wellfield Pinelines	LF	\$ZJJ	1400	\$304,200
12" HDPF	LF	\$79	0	\$0
20" HDPE	LF	\$136	0	\$0
24" HDPE	LF	\$167	0	\$0
30" HDPE	LF	\$229	0	\$0
36" HDPE	LF	\$253	0	\$0
Sand Separators	EA	\$88.550	2	\$177,100
Cartridge Filters	EA	\$46.000	3	\$138,000
RO Feed Pumps	EA	\$275.000	5	\$1.375.000
RO Systems	GPD	\$0.45	8900000	\$4,005,000
RO CIP System	FA	\$155,000	1	\$155,000
RO Flush/Plant Water Pumps	FA	\$35,000	4	\$140,000
RO Flush Tank	FA	\$150,000,00	1	\$150,000
Product Water Storage Tank	gal	\$1.00	1990000	\$1,990,000
Finished Water Pumps	FΔ	\$175,000	3	\$525,000
Product Water Pineline	LE	\$304	30530	\$9,281,120
Concentrate Dineline	IF	\$30 4 \$106	1/00	\$1/8/00
SMD Connection Station	EA	\$300,000	1400	\$300,000
Lime Feed System	EA	\$747,500	1	\$747,500
Sodium Hypochlorita Food System	EA	\$747,500	1	\$747,500
Sould In hippochionice Leed System		\$07,300	1	\$07,500
Scale IIIIIDIOI Stolaye and Feed		\$07,000 ¢250	1040	\$07,000 ¢1,010,000
Building, Non-Process Area 2	Г I ГТ ²	\$250	4048	\$1,012,000
Building, Process Area		\$200	7850	\$1,570,000
Covered Chemical Storage	FI	\$75	2200	\$165,000
Sitework ³	%	5%		\$614,230
Electrical & I/C 4	%	30%		\$3,685,380
Mechanical ⁵	%	25%		\$2,384,400
Direct Cost Subtotal				\$45,600,230
Contingency	%	25%		\$11,400,058
Subtotal				\$57.000.288
Sales Tax ⁶	%	9%		\$2,565,013
Subtotal				\$59,565,300
Contractor General Conditions	%	6%		\$3 573 918
Subtotal	70	0,0		\$63 139 218
Contractor Overbead and Profit	%	12%		\$7 576 706
Subtotal	70	1270		\$70,715,025
Escalation to Midpoint ⁷	%	2.0%		\$2.050.762
	/0	2.770		\$2,UJU,702
TOTAL CONSTRUCTION COSTS				\$72,766,686
Engineering and Contract Administration (20%)	%	17%		\$12,370,337
TOTAL PROJECT COST ¹²				\$85,137,023

1. Based on CDA Phase III Expansion well costs

2. Includes general building HVAC and plumbing.

3. Includes demolition, excavation, paving, sidewalks, landscaping and general site improvements. Excludes pipelines and wells.

4. Electrical for desalter site facilities only and does not include backup power. Well electrical costs included in well equipment unit cos

5. Estimate for onsite piping, valves, supports, etc. HVAC and plumbing included in building per square foot cost.

Estimated as sales tax*(0.5*direct cost+contingency)
 Assumes 18 month construction schedule.

	Units	Unit Costs	Quantity	Cost
Drilled and Equipped Wells ¹	EA	\$2,500,000	12	\$30,000,000
North Wellfield Pipelines				
12" HDPE	LF	\$79	4550	\$359,450
20" HDPE	LF	\$136	3150	\$428,400
24" HDPE	LF	\$167	2/00	\$450,900
30 HDPE 26" HDDE		\$229	1350	\$309,150
South Wellfield Pinelines	LF	\$ZJJ	1400	\$504,200
12" HDPF	LE	\$79	3075	\$242 925
20" HDPE	LF	\$136	1600	\$217,600
24" HDPE	LF	\$167	3100	\$517,700
30" HDPE	LF	\$229	0	\$0
36" HDPE	LF	\$253	3950	\$999,350
Sand Separators	EA	\$88,550	4	\$354,200
Cartridge Filters	EA	\$46,000	6	\$276,000
RO Feed Pumps	EA	\$275,000	10	\$2,750,000
RO Systems	GPD	\$0.45	17800000	\$8,010,000
RO CIP System	EA	\$155.000	1	\$155.000
RO Flush/Plant Water Pumps	EA	\$35.000	4	\$140.000
RO Flush Tank	EA	\$150.000.00	1	\$150.000
Product Water Storage Tank	dal	\$1.00	4010000	\$4.010.000
Finished Water Pumps	FA	\$175.000	5	\$875.000
Product Water Pipeline	LE	\$425	30530	\$12 975 250
Concentrate Pipeline	LF	\$136	1400	\$190 400
SMP Connection Station	FA	\$300.000	1	\$300,000
Lime Feed System	FA	\$747 500	1	\$747 500
Sodium Hypochlorite Eeed System	FΔ	\$67 500	1	\$67,500
Scale Inhibitor Storage and Feed	FΔ	\$67,500	1	\$67,500
Building Non-Process Area ²	FT ²	\$250	1018	\$1,012,000
Building, Process Area 2	FT ²	\$200	15700	\$3 1/0 000
Covered Chemical Storage	FT ²	\$200	2200	\$3,140,000
Covered Chemical Storage		\$1.3	2200	\$103,000
Sitework ³	%	5%		\$1,095,985
Electrical & I/C 4	%	30%		\$6,575,910
Mechanical ⁵	%	25%		\$4,400,675
Direct Cost Subtotal				\$81,337,595
Contingency	%	25%		\$20,334,399
Subtotal				\$101,671,994
Sales Tax ⁶	%	9%		\$4,575,240
Subtotal				\$106,247,233
Contractor General Conditions	%	6%		\$6,374,834
Subtotal				\$112,622,067
Contractor Overhead and Profit	%	12%		\$13,514,648
Subtotal				\$126,136,716
Escalation to Midpoint ⁷	%	2.9%		\$3,657,965
·				
TOTAL CONSTRUCTION COSTS				\$129,794,680
Engineering and Contract Administration (20%)	%	14%		\$18,171,255
TOTAL PROJECT COST ¹²				\$147,965,936

1. Based on CDA Phase III Expansion well costs

2. Includes general building HVAC and plumbing.

3. Includes demolition, excavation, paving, sidewalks, landscaping and general site improvements. Excludes pipelines and wells.

4. Electrical for desalter site facilities only and does not include backup power. Well electrical costs included in well equipment unit cos

5. Estimate for onsite piping, valves, supports, etc. HVAC and plumbing included in building per square foot cost.

Estimated as sales tax*(0.5*direct cost+contingency)
 Assumes 18 month construction schedule.