Technical Memorandum Feasibility Assessment of Iron and Manganese Removal Facilities at the El Rio Water Treatment Plant

United Water Conservation District (UWCD) Prepared by: Robert Richardson, PE

> Draft Issue: March 10, 2016 Final Issue: August 11, 2016

Technical Memorandum Feasibility Assessment of Iron and Manganese Removal Facilities at the El Rio Water Treatment Plant

Acknowledgements (United Water Conservation District Staff):

Contributors:

Robert Richardson, PE, Associate Engineer – Primary author

John Lindquist, PG, CHG, Senior Hydrogeologist – Author of Lower Aquifer System drawdown evaluation Dan Detmer, PG, CHG, Supervising Hydrogeologist – Well Nos. 12, 13 and 14 existing water quality data Brian Collins, Instrumentation and Electrical Supervisor – Coordination of Well Nos. 12, 13 and 14 VFD proposals from Rockwell Automation

Reviewers:

Anthony Emmert, Deputy General Manager Jim Grisham, PE, Engineering Manager Mike Ellis, O&M Manager John Carman, Chief Water Treatment Operator Craig Morgan, PE, Senior Engineer Kaili Taniguchi, PE, Assistant Engineer

<u>Administrative Support:</u> Kris Sofley, Administrative Assistant

Operations Support: Mike Ellis, O&M Manager John Carman, Chief Water Treatment Operator Brian Collins, Instrumentation and Electrical Supervisor Ruben Sanchez, Water Treatment Operator III

Acknowledgements (Other):

Daniel Chase, PE, Stantec Consultants – Information regarding existing El Rio sewer. Mr. Chase was the design engineer.

Layne Christensen Company – Pilot Plant Testing

Technical Memorandum Feasibility Assessment of Iron and Manganese Removal Facilities at the El Rio Water Treatment Plant

This Technical Memorandum was prepared by the following Registered Professional Engineer:

Technical Memorandum Feasibility Assessment of Iron and Manganese Removal Facilities at the El Rio Water Treatment Plant

Contents

Abb	reviations		6
1.	Preface a	and Pilot Plant Update	7
2. 2. 2. 2. 2.	1 Purp 2 Reg 2.2.1 2.2.2 2.2.3 3 Desc 4 Exis 2.4.1 2.4.2 2.4.3	and Background pose of this Technical Memorandum	8 8 9 10 13 13 13 14
2.	5 Exis 2.5.1 2.5.2 2.5.3	ting Demand and Operational Modes Existing Demand Operational Prioritization of Wells Description of Existing El Rio Water Treatment Process	17 17
3. 3. 3.	1 Prop 2 Avai 3.2.1 3.2.2 3.2.3	on posed Design Criteria ilable Types of Treatment Chemical Sequestration Oxidation Clarification	19 21 22 22 26
3.	3.2.4 3 Inte 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10	Filtration grating New Treatment Process into Existing Facilities Consideration of Greensand Filter Treatment Potential Locations Hydraulic Considerations (Existing Well Nos. 12, 13, 14 and Booster Pumps) Demand Considerations Supply Considerations and Drawdown Evaluation (LAS Groundwater Supply) Oxidant Considerations (Existing Chlorination System) Control Considerations Electrical Considerations Sewer Considerations Cost Considerations	32 32 33 35 38 38 40 41 41 43
4.	Conclusio	on	46
5.		endations (Next Steps)	
6.	Referenc	es	48

7. Apj	pendices	49
7.1	Additional Water Quality Data for Well Nos. 12, 13 and 14	49
7.2	Historic Static and Pumping Water Levels at Well Nos. 12, 13 and 14	49
7.3	Lower Aquifer System Drawdown Impact Calculations	49
7.4	Proposed Greensand Filtration Plant with Chlorine Oxidation	49
7.5	Conceptual Plans - Iron and Manganese Treatment Plant	49
7.6	Head Loss Calculations	49
7.7	Layne Christensen Pilot Study Report	49
7.8	Silt Density Index (SDI) Test Data	49
7.9	SWRCB Letter in Response to Proposition 1 Groundwater Grant Funding Pre-Application	49

Abbreviations Used

μg/L	Micrograms per Liter
AEP	Annual Exceedance Probability
AWWA	American Water Works Association
CCR	California Code of Regulations
CFS	Cubic Feet per Second
CMWD	Calleguas Municipal Water District
CWET	California Waste Extraction Test
DDW	Division of Drinking Water (State Water Resources Control Board)
DO	Dissolved Oxygen
DWS	Domestic Water Supply
DWSRF	Drinking Water State Revolving Fund
FCGMA	Fox Canyon Groundwater Management Agency
gpm	Gallons Per Minute
GSP	Groundwater Sustainability Program
HAA	Haloacetic acid
kWh	Kilowatt Hour
LAS	Lower Aquifer System
M&I	Municipal and Industrial
MCL	Maximum Contaminant Level
MG	Million Gallon
mg/L	Milligrams per Liter
NTU	Nephelometric Turbidity Unit
O-H	Öxnard-Hueneme
PHWA	Port Hueneme Water Agency
PLC	Programmable Logic Controller
ppm	Parts Per Million
РТР	Pumping Trough Pipeline
PVC	Polyvinyl Chloride
RMWTP	Round Mountain Water Treatment Plant (Camarillo)
RO	Reverse Osmosis
RPM	Rotations Per Minute
SCADA	Supervisory Control and Data Acquisition
SCE	Southern California Edison
SDI	Silt Density Index
SDR	Pressure rating applied to PVC pipe where "S" is wall thickness and "D" is outside diameter
SWF	Steckel Water Facility (Santa Paula)
SWRCB	State Water Resources Control Board
SWT	Surface Water Treatment
TDS	Total Dissolved Solids
THM	Trihalomethanes
ТМ	Technical Memorandum
тос	Total Organic Carbon
TOU	Time of Use
UAS	Upper Aquifer System
USEPA	United State Environmental Protection Agency
UWCD	United Water Conservation District
VFD	Variable Frequency Drive
WHO	World Health Organization

1. Preface and Pilot Plant Update

This Technical Memorandum (TM) was initially issued on March 10, 2016 to all Oxnard-Hueneme Pipeline customers for review and comment. No written comments have been received to date. On February 23, 2016, UWCD solicited for proposals for on-site pilot testing of a manganese greensand (or MnO₂ sand) filtration plant which could include other types of media. Five firms submitted proposals including: Performance Water Products, Hungerford and Terry, Pureflow Filtration Division, and Layne Christensen. Pilot testing was awarded to Layne Christensen which was conducted for a period of one week from May 16 to May 20, 2016. Two types of granular filter media were tested, Anthracite/Greensand Plus and LayneOx. The final report prepared by Layne Christensen is included in **Appendix 7.7**.

The following is a summary of observations made by UWCD staff during pilot plant testing:

- Well No. 12 and 13 iron and manganese concentrations during pilot plant testing were slightly less than historical averages. Sampling in the past was taken during well flushing events and may have contained higher concentrations of iron and manganese.
- There is evidence of scaled material in the casings for Well No. 12 and 13 which may have interfered, to a small degree, with chlorine demand. This is not expected to significantly affect well or filtration performance.
- Iron and manganese can be removed to non-detect levels using Greensand Plus or LayneOx granular media.
- Clarification is not needed to remove bulk iron and manganese precipitates prior to filtration.
- The highest filter loading rates that can be sustained for a 16 hour duration (minimum) without iron and manganese breakthrough was 6 gpm/ft² for Greensand Plus and 9 gpm/ft² for LayneOx. This exceeds the typical AWWA design standard of 3 gpm/ft² for manganese greensand.
- Both Greensand Plus and LayneOx filter effluent passed silt density index (SDI) testing. However, LayneOx's SDI results were considerably higher than Greensand Plus. Most reverse osmosis (RO) membrane manufacturers use SDI testing to determine fouling potential. Lower SDI values indicate less fouling potential and longer periods of time between cleanings. Nitto Hydranautics, a leading RO membrane manufacturer, recommends that the average SDI value in the feed water not exceed 2.5. The average filter effluent SDI values were 1.72 and 3.42 for Greensand Plus and LayneOx respectively. All SDI test data is contained in Appendix 7.8.
- Additional chlorine contact for full manganese oxidation is not necessary. The catalytic properties of either media is sufficient for removal of manganese below detection limits.
- The potential hazard of the backwash sludge was not evaluated. However, low levels of arsenic and radionuclides were observed in raw well water.

This report has been updated in several areas based on pilot plant test results which is denoted by the " \mathscr{I} " or pencil icon.

2. Purpose and Background

2.1 Purpose of this Technical Memorandum

The purpose of this Technical Memorandum (TM) is to provide an assessment on the feasibility of constructing iron and manganese removal facilities for deep wells at the United Water Conservation District's (UWCD) El Rio Groundwater Recharge and Booster Facility located at 3561 N Rose Avenue in Oxnard, California. In particular, it is intended to summarize key information relevant to the proposed treatment of deep wells and attempts to establish conceptual level criteria for design. This TM should not be interpreted as detailed design work and costs presented should only be used for budgetary purposes.

2.2 Regulatory Drivers

The UWCD El Rio Facility is permitted to operate and provide drinking water to Oxnard-Hueneme (O-H) Pipeline customers under the State of California State Water Resources Control Board (SWRCB) Division of Drinking Water (DDW) Domestic Water Supply (DWS) Permit No. 04-06-15P-005 as issued on April 2, 2015. The permit is subject to Title 22, Division 4 - Environmental Health of the California Code of Regulations (CCR).

2.2.1 Domestic Water Supply Wells under the Surface Water Treatment Rule

The El Rio Facility receives surface water from the Santa Clara River for groundwater recharge. The DWS permit requires that for any domestic water supply well located within 150 feet of a recharge basin, it must comply with Surface Water Treatment (SWT) Regulations (CCR Title 22, Division 4, Chapter 17). A total of eight wells at the El Rio Facility are subject to this rule (Well Nos. 2A, 4, 5, 6, 8, 15, 16 and 17). Well 11 is excluded because it is more than 150 feet away from an active recharge basin. The SWT rule requires at least a 3 log (99.9%) removal of Giardia and a 4 log (99.99%) removal of viruses. The El Rio Recharge Basins are considered slow sand filters and are credited with a 2 log (99.0%) removal of Giardia and a 1 log (90.0%) removal of viruses. Therefore, the remaining credits must be provided by the disinfection process. It should be noted that in order to comply with the SWT rule, the treated water cannot exceed 1 Nephelometric Turbidity Unit (NTU) and the instantaneous filtration rate cannot exceed 0.1 gallons per minute per square foot which shall be reported on an annual basis.

2.2.2 Nitrates

Plant effluent from the El Rio Facility must comply with the California Primary Maximum Contaminant Level (MCL) for nitrates which is stated in the DWS permit as 45 mg/L (NO₃). Individual wells may exceed the MCL provided that the plant effluent (blended wells) remains below the MCL. Individual wells must be monitored on a weekly basis while the plant effluent must be monitored on a daily basis. Exceedance of the MCL may trigger public notification if not corrected within 24 hours. It should be noted that DDW now requires reporting of nitrates to be represented in terms of nitrogen (NO3 as N) which is 10 mg/L. However, no corrections to the permit have been made to date.

2.2.3 Iron and Manganese

Plant effluent from the El Rio Facility must comply with the California Secondary MCL for iron and manganese which is stated in CCR Title 22, Division 4, Chapter 15 as 0.3 mg/L and 0.05 mg/L respectively. Individual wells may exceed the MCL provided that the plant effluent remains below the MCL. If the plant effluent exceeds the MCL, UWCD must survey its customers and apply for a waiver for secondary MCL compliance. If more than 50% of the number of customers surveyed request iron and manganese removal, then UWCD must construct a treatment facility.

On March 20, 2015, UWCD sent letters to all O-H pipeline customers with a survey containing two options: (1) DDW grant a 5-year waiver to UWCD for continuation to exceed secondary MCL standards for iron and manganese or (2) construct treatment facilities to remove iron and manganese. The letter was sent to a total of eight (8) O-H pipeline customers, and seven (7) responses were received as presented in **Table 1**. On January 5, 2016, DDW granted UWCD a 1-year waiver to postpone iron and manganese treatment until December 31, 2016.

O-H Pipeline Customer	2015 Sub-allocation (AF/YR)	Waiver Option	Treatment Option
City of Oxnard	6,803		Х
Cypress Mutual Water Company	73	Х	
Dempsey Road Mutual Water Company	148	Х	
El Rio School District	23		No Response ³
Naval Base Ventura County	see PHWA	X1	
Port Hueneme Water Agency (PHWA) ²	3,532	X1	
Saviers Road Mutual Water Company	21	Х	
Vineyard Avenue Estates	203	Х	

Notes: (1) Requested a 1-year waiver be granted instead of 5-years

(2) Includes Channel Islands Community Beach Services District (CICBSD)

(3) A non-response counts as a request for treatment as indicated in the UWCD survey letter

It is worth mentioning that Primary MCLs were established because of health concerns with contaminants having known acute or chronic toxicities. Secondary MCLs were established to address contaminants that affect aesthetics such as taste, color and odor. While contaminants regulated by secondary MCLs do not pose an immediate risk to public health, an American Water Works Association (AWWA) task group suggested limits of 0.05 mg/L for iron and 0.01 mg/L for manganese to provide water that is more "ideal" for public use. The World Health Organization (WHO) reports discoloration at iron concentrations of 0.05 mg/L and taste detection above 0.3 mg/L.

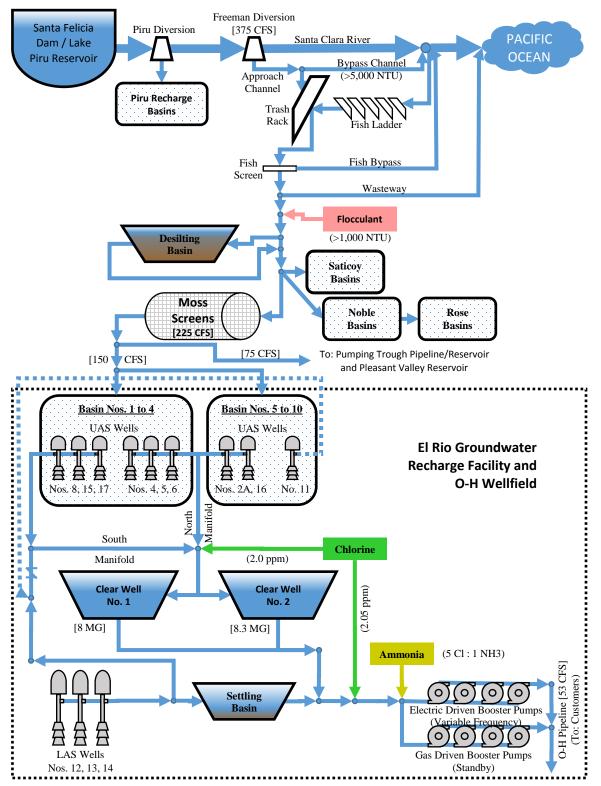
Pilot Plant testing demonstrated that removal of iron and manganese to non-detect levels was possible with Greensand Plus and LayneOx media. Detectable levels of iron and manganese are 0.03 mg/L and 0.01 mg/L respectively. This satisfies both AWWA and WHO recommendations.

Furthermore, facilities using reverse osmosis report scaling and a large decrease in efficiency when iron concentrations reach 0.05 to 1.0 mg/L (combined soluble and insoluble species). The PHWA, an O-H Pipeline customer shut down their Brackish Water Reclamation Demonstration Facility in July 2015 due to reported high levels of iron and manganese.

2.3 Description of Existing Facilities and Process

The El Rio Facility and well field was originally constructed in 1954 for the purpose of groundwater recharge. The site was selected because of its location in the Oxnard Forebay, an unconfined portion of the Oxnard Plain basin. The Oxnard Forebay is unique because it contains a hydraulic connection between the Upper Aquifer System (UAS) and Lower Aquifer System (LAS) and exhibits excellent recharge capabilities. Source water for groundwater recharge at El Rio comes from surface flows from the Santa Clara River or from Lake Piru Reservoir conservation releases (approximately 32 miles upstream) which are both intercepted at the Freeman Diversion (approximately 5 miles upstream). The surface water is distributed into a series of basins at the El Rio Groundwater Recharge Facility totaling approximately 80 acres. **Figure 1** shows a simplified system schematic from Lake Piru to the El Rio Facility.

From 1954 to 1986, most of the wells at El Rio extracted groundwater from the UAS except Well Nos. 9 and 10. Well Nos. 9 and 10 were abandoned. The UAS consists of an upper Oxnard aquifer and a lower Mugu aquifer. Most of the recharge at El Rio occurs in the upper Oxnard aquifer. There is concern over nitrates in the UAS wells especially during periods of extended drought. The most likely source of nitrate loading originates from adjacent agricultural operations to the north and east of the El Rio Recharge Basins. As the groundwater elevation falls and there is less water for groundwater recharge, nitrates become more concentrated. Nitrates are highly mobile in solution and move with groundwater flow. A series of recent reports on nitrates suggested that scattered clay lenses have had some effect on prohibiting vertical movement of nitrates resulting in varying water quality between the Oxnard and Mugu aquifers. A complete listing of UAS wells is shown in **Table 2**.


	Tab	ole 2 – Existing El Rio	Facility UAS Pr	oduction Wells	
Well No.	Well Capacity	Specific Capacity ¹	Well Depth	Pump Bowl Depth	Motor Size
well no.	(gpm)	(gpm/ft)	(ft)	(ft)	(HP)
2A	3,200	223	320	176	100
4	2,300	181	307	155	100
5	2,600	128	306	177	100
6	2,470	203	304	187	100
8	3,100	100	319	187	100
11	3,500	87	360	163	150
15 ²	3,500	96	330	192	150
16	2,150	279	340	178	100
17	2,150	100	300	190	100

Notes: (1) Estimated based on most recent available Southern California Edison Pump Tests (2014). Extended drought, falling groundwater surface elevations has a significant impact on well production. (2) Well No. 15 replaced Well No. 10 (LAS)

In 1983 to 1984 three deep wells (Nos. 12, 13 and 14) were constructed in the lower aquifer system (LAS) as part of the Pumping Trough Pipeline (PTP) system to meet irrigation needs for agricultural users in the Oxnard Plain. The wells were not operational until 1986. The main purpose of the PTP system was to combat seawater intrusion by replacing or substituting the use of agricultural user's private UAS wells in favor of Santa Clara River surface water. The deep wells were intended to augment production for PTP users when there was a lack of surface water deliveries from the Santa Clara River. However, the deep wells were also constructed with the ability to provide a supplemental source of drinking water for O-H

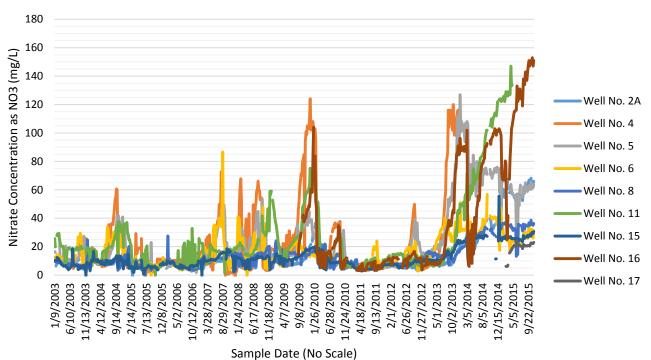
Pipeline users. It was projected that O-H demands would increase over time, but increased demand was offset by PHWA's import of State Water Project water from the Calleguas Municipal Water District (CWMD). Additionally, the Fox Canyon Groundwater Management Agency has cut back on pumping allocations in recent years. Because the three deep wells exceed the secondary MCLs for iron and manganese, these wells have not historically provided water for O-H pipeline users except during periods of extreme drought or increasing nitrate levels in UAS wells. These wells are the focus of this TM and more detailed information is provided in **Table 3**.

Table 3 - Existing El Rio LAS Production Wells								
Parameter	Well No. 12	Well No. 13	Well No. 14					
Year of Installation	1986	1986	1986					
Well Depth	1,112 ft	1,418 ft	1,470 ft					
Screen Depth	751.5 to 1,091.5 ft	857 to 1,397 ft	577.5 to 1,477.5 ft					
Screen Length	340 ft	540 ft	900 ft					
Screen Slot Size	0.065 in	0.065 in	0.055 to 0.065 in					
Pump Manufacturer	Peerless Pump	Peerless Pump	Peerless Pump					
Discharge Size	12 in	12 in	14 in					
Column Size	12 in	12 in	14 in					
Column Length	470 ft	341 ft	380 ft					
Bowl Assembly	14 HXB	14 HXB	16 HXB					
Bowl Stages	7	6	5					
Bowl Length	7 ft 10 in	6 ft 11 in	6 ft 10 in					
Bowl O.D.	13-5/8 in	13-5/8 in	15-1/4 in					
Capacity (Rated)	2,500 gpm	2,500 gpm	3,500 gpm					
	468 ft	360 ft	432 ft					
Total Head (Rated)	@ 2,500 gpm	@ 2,500 gpm	@ 3,500 gpm					
Discharge Head	38 ft	61 ft	112 ft					
(2014 SCE Test)	@ 2,500 gpm	@ 2,250 gpm	@ 3,500 gpm					
Specific Capacity (2014 SCE Test)	~23 gpm/ft	~18 gpm/ft	~26 gpm/ft					
Min. Efficiency	83%	83%	84%					
Pump Pad Elevation	116.69 ft	109.42 ft	100.49 ft					
Motor Manufacturer	US Motors	US Motors	US Motors					
Motor Model	Titan Line Vertical	Titan Line Vertical	Titan Line Vertical					
Motor HP	400 HP	300 HP	500 HP					
Motor RPM	1800 RPM	1800 RPM	1800 RPM					
Space Heater?	Yes	Yes	Yes					
Service Factor	1.15	1.15	1.15					
Insulation	Class F	Class F	Class F					

Note: All capacities shown as [X] are maximum design and do not represent average or daily values.

Figure 1 - Overall UWCD System Schematic (Existing)

2.4 Existing Water Quality


2.4.1 Source of Iron and Manganese in Groundwater

Iron constitutes 4.5% of the lithosphere (the outermost portion of the Earth's crust) and occurs in igneous rocks. Manganese constitutes 0.1% of the lithosphere and occurs in metamorphic and sedimentary rocks. Higher concentrations of both iron and manganese are typically found in lower alkalinity groundwater. Iron causes reddish-brown stains on plumbing fixtures, dishware and clothing while manganese causes brownish-black stains.

In groundwater supplies, iron is typically found in the soluble ferrous form (Fe^{2+}) and oxidizes to its insoluble ferric form (Fe^{3+}). Manganese is typically found in the soluble manganous form (Mn^{2+}) and oxidizes to its insoluble manganic (Mn^{3+}) and Mn^{4+} forms. As groundwater depth increases, iron and manganese are increasingly found in their soluble form due to the lack of dissolved oxygen present. In the presence of air, iron typically precipitates as insoluble ferric oxide (Fe_2O_3 , or commonly known as "rust") and manganese typically precipitates as insoluble manganese dioxide (MnO_2).

2.4.2 Upper Aquifer System Wells

Data ranging from 2003 to 2015 on El Rio UAS well water quality was compiled for this report. The greatest water quality concern in UAS wells is nitrate concentrations which have historically increased during times of drought. This trend is demonstrated in **Figure 2** during a period of extended drought starting in 2012. While the actual nitrate concentration leaving the El Rio Plant into the O-H Pipeline has not exceeded primary MCLs, this trend is somewhat alarming in that there is reduced operational flexibility to meet regulatory standards during this time. Should the trend continue, the El Rio Plant could be in violation of its drinking water permit which might result in Tier 1 public notices and mandatory shutdowns. Tier 1 public notification would inform users that the water contains high levels of nitrates and should not be consumed by pregnant women or infants under 6 months due to the risk of "blue-baby" syndrome.

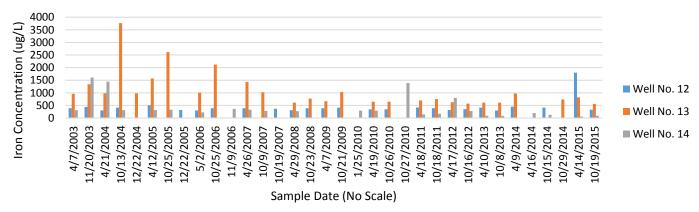
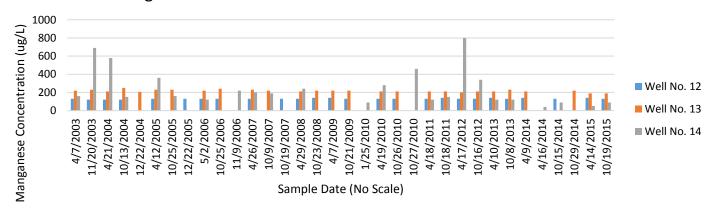

Nitrate Concentrations in UAS Wells Between 2003 and 2015

Figure 2 - Nitrate Concentrations in UAS Wells Between 2003 and 2015

UAS wells have low levels of iron concentrations (0.074 mg/L on average) and negligible levels of manganese. This iron concentration is 25% of the secondary MCL and does contribute to the iron concentration in the finished product water from the El Rio Plant. The pH, TDS and turbidity in UAS well water is stable with averages of 7.5, 1,110 mg/L and 0.6 NTU respectively. TDS in UAS well water exceeds the secondary MCL upper limit of 1,000 mg/L while sulfate concentrations remain slightly below the upper limit of 500 mg/L. **Table 4** compares the water quality between UAS and LAS wells.


2.4.3 Lower Aquifer System Wells

Data ranging from 2003 to 2015 on El Rio LAS well water quality was compiled for this report. The greatest water quality concern in LAS wells is iron and manganese concentrations. These concentrations have remained relatively stable as shown in **Figure 3** and **Figure 4**. The average iron and manganese concentration in LAS wells is 0.64 mg/L and 0.2 mg/L respectively. Both concentrations exceed the secondary MCLs. The pH, TDS and turbidity in LAS well water is stable with averages of 7.7, 1,050 mg/L and 3.0 respectively. TDS in LAS well water exceeds the secondary MCL while sulfate concentrations remain slightly below. Recent sampling of Well Nos. 12, 13 and 14 dated December 29, 2015 suggested negligible concentrations of ammonia and hydrogen sulfide while Total Organic Carbon (TOC) measured 0.5 to 1.0 mg/L. **Table 4** compares the water quality between UAS and LAS wells. Additional LAS well water quality data is presented in **Appendix 7.1**.

Iron Concentrations in LAS Wells Between 2003 and 2015

Figure 3 - Iron Concentrations in LAS Wells Between 2003 and 2015

Manganese Concentrations in LAS Wells Between 2003 and 2015

Figure 4 - Manganese Concentrations in LAS Wells Between 2003 and 2015

Pilot Plant testing indicated that the iron and manganese concentrations in raw well water was lower than historical averages. The average iron concentration was 0.35 mg/L and 0.49 mg/L for Well No. 12 and 13 respectively. The average manganese concentration was 0.15 mg/L and 0.21 mg/L for Well No. 12 and 13 respectively. Well No. 13 had slightly higher TDS and turbidity concentration than Well No. 12. The average TDS was 900 mg/L and 995 mg/L for Well No. 12 and 13 respectively. The average turbidity was 1.6 NTU and 3.4 NTU for Well No. 12 and 13 respectively.

On the first day of testing using Well No. 13 as the feed source to all columns, there was 0.2 mg/L chlorine residual from the Greensand Plus columns and no chlorine residual from the LayneOx columns. All columns were fed with the same source water containing the same chlorine concentration. After a longer run time with Well No. 13 and adjusting the chlorine dosage, all columns were observed to have a chlorine residual. There was some concern during testing that biofilm or some other constituent was interfering with chlorine demand. Biofilm is not likely as the average TOC concentration was 0.7 mg/L and 0.8 mg/L for Well No. 12 and 13 respectively. However, there is some evidence of scaled material on blank carbon steel sections of column pipe as shown in **Figure 5** and **Figure 6**. Additional sampling and investigation is needed to substantiate the claim.

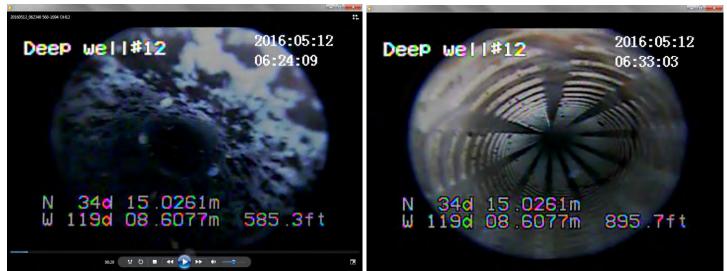


Figure 5 - Down hole well inspection video of Well No. 12, dated May 12, 2016. Blank carbon steel casing is shown on the left, and louvered stainless steel casing is shown on the right.

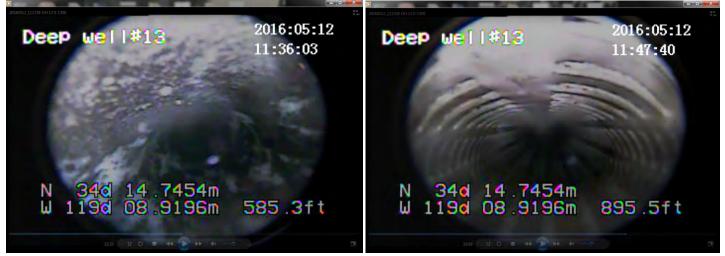


Figure 6 - Down hole well inspection video of Well No. 13, dated May 12, 2016. Blank carbon steel casing is shown on the left, and louvered stainless steel casing is shown on the right.

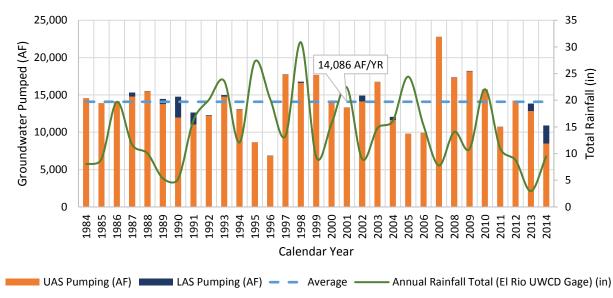
					Tak	ole 4 - El	Rio Well	Produc	tion and V	Vater Qu	uality ¹	-						
Well		Depth	Existing	Nitrate (as NO3)					Iron (Fe)			Manganese (Mn)				рН		
No.	Aquifer	-	Production		MCL ² =	45 mg/l	-		$MCL^3 = 3$	300 µg/l	-		MCL ³	= 50 µg	g/L		n/a	
		feet	cfs (gpm)	Min	Avg	Max	AEP ⁴	Min	Avg	Max	AEP ⁴	Min	Avg	Max	AEP ⁴	Min	Avg	Max
2A	UAS	320	7.1 (3,200)	<0.5	13.4	68.2	7.1%	<30	84	250	0.0%	<10	<10	<10	0.0%	6.5	7.5	8.1
4	UAS	307	5.1 (2,300)	<0.5	22.1	124	14.2%	<30	74	140	0.0%	<10	<10	<10	0.0%	7.2	7.5	8.3
5	UAS	306	5.8 (2,600)	<0.5	25	127	17.9%	<30	75.7	110	0.0%	<10	<10	<10	0.0%	5.8	7.5	8.3
6	UAS	304	5.5 (2,470)	<0.5	16.5	86.7	0.9%	<30	76.3	120	0.0%	<10	<10	<10	0.0%	6.4	7.5	8.6
8	UAS	319	6.9 (3,100)	<0.5	12.8	38.6	0.0%	<30	61.4	80	0.0%	<10	<10	<10	0.0%	6.8	7.6	8.4
11	UAS	360	7.8 (3,500)	<0.5	26	147	15.9%	<30	67.5	110	0.0%	<10	<10	<10	0.0%	5.9	7.5	8.6
12	LAS	1,112	5.6 (2,500)	<0.5	2.8	11.7	0.0%	300	429.6	1800	88.5%	120	131	140	100.0%	6.2	7.7	8.3
13	LAS	1,390	5.6 (2,500)	<0.5	1.9	5.6	0.0%	560	1079.3	3770	100.0%	190	217	250	100.0%	6.2	7.7	8.3
14	LAS	1,495	7.8 (3,500)	<0.5	5.1	10	0.0%	60	407.9	1610	41.7%	40	243	800	91.7%	6.4	7.6	8.3
15	UAS	330	7.8 (3,500)	<0.5	11.7	30.6	0.0%	<30	70	110	0.0%	<10	<10	<10	0.0%	6.8	7.6	8.4
16	UAS	340	4.8 (2,150)	3.1	42	153	34.0%	<30	82.5	120	0.0%	<10	<10	<10	0.0%	6.4	7.5	8.2
17	UAS	300	4.8 (2,150)	6	18.7	23.9	0.0%	<30	75	100	0.0%	<10	<10	<10	0.0%	6.7	7.2	7.8

Notes:

(1) All information presented is from available sampling data ranging from 2003 to 2015

(2) CCR Title 22 Primary Drinking Water Standard (USEPA lists MCL as Nitrogen)

(3) CCR Title 22 Secondary Drinking Water Standard (requires waiver for exceedance)


(4) Annual Exceedance Probability (AEP) based on number of times sampling data exceeded MCL

(5) 1 mg/L = 1,000 μg/L

2.5 Existing Demand and Operational Modes

2.5.1 Existing Demand

From 1984 to 2014, the average annual well production from the El Rio Plant well field was approximately 14,000 AC-FT (see **Figure 7**). The majority of the water produced was delivered through the O-H Pipeline for potable drinking water purposes. Production from the LAS wells was divided among O-H Pipeline and PTP system customers which is not accounted for in **Figure 7**. Some correlation can be made between intense rainfall years and lower overall well production, but this is not consistently the case. There is a direct correlation between extended drought years and increased operation of the LAS wells.

El Rio Plant Annual Demand

Figure 7 - El Rio Wellfield Annual Production

2.5.2 Operational Prioritization of Wells

In the last five years, the average annual water production was closer to 13,000 AC-FT as shown in **Table 6**. This is likely due to extended periods of drought and water conservation efforts. It should be noted that emphasis has been historically placed on production from wells that: (1) have the lowest levels of nitrate concentrations and (2) have the highest specific capacities (hydraulically efficient). **Table 5** summarizes the operational priority of the El Rio well field in the last five years.

Table 5 -	Table 5 - Operational Priority of El Rio Wells										
Rank	Rank UAS LAS										
1.	Well No. 15	Well No. 14									
2.	Well No. 8	Well No. 12									
3.	Well No. 16	Well No. 13									

		Table 6 -	· El Rio Pla	nt Annual	Well Proc	duction	
Well No.	Aquifer	2014	2013	2012	2011	2010	Average
2A	UAS	1,188	766	1,250	1,102	1,162	1,094
4	UAS	0	129	183	647	740	340
5	UAS	80	248	51	510	440	266
6	UAS	653	1,509	201	949	2,037	1,070
7	UAS	1,174	425	119	673	1,181	714
8	UAS	2,059	2,077	3,269	1,575	1,595	2,115
11	UAS	286	1,895	2,264	1,004	1,254	1,341
12	LAS	466	878	3	3	5	271
13	LAS	4	122	3	2	22	31
14	LAS	1,949	3	3	3	6	393
15	UAS	2,549	4,666	3,782	2,203	4,659	3,572
16	UAS	507	1,134	3,082	2,076	2,627	1,885
17	UAS	0	0	0	0	0	0
	Totals	10,915	13,852	14,210	10,747	15,728	13,090

2.5.3 Description of Existing El Rio Water Treatment Process

The El Rio Plant receives surface water through diversions at the Freeman Diversion structure. This water is distributed into two parallel series of basins (Nos. 1 through 4 and Nos. 5 through 10) as shown in **Figure 1**. These basins, which are divided by earthen levees, have high percolation rates which recharges the UAS. While the UAS and LAS are connected hydraulically in the Oxnard Forebay, the LAS is understood to recharge much slower. Stored water is extracted through either UAS wells or LAS wells.

Since UAS wells are recharged through surface water deliveries, they must meet 3 log removal of Giardia (protozoa) and 4 log removal of viruses. This is achieved through the natural filtration of the basins and disinfection in the clearwells. The basins act as slow sand filters with surface loading rates less than 0.1 gpm/ft². This slow surface loading rate is from the effect of screening and sedimentation on the surface which helps to remove parasitic protozoa that are typically less than 50 micrometers in size. Water has to travel approximately 150 feet downward through the filtration basins before being drawn by an extraction well. Water then flows to the clearwells in series (or can be operated in parallel) which consist of lined earthen basins with floating covers. Gaseous chlorine is dosed to a concentration of approximately 2.0 ppm upstream of the clearwells and 2.05 ppm downstream of the clearwells. Chlorine is a strong oxidant that damages and destroys protozoa and viruses. Sufficient contact time in the clearwells is provided through a serpentine path created by a baffle in the center of each clearwell. One part of ammonia for every five parts of chlorine is added in the post-chlorinated water from the clearwells to create chloramines. The chloraminated finished water from the clearwells enters a pump trough that feeds one of eight booster pumps that provide the pressure needed for O-H Pipeline customers (four electric and four gas-driven). Typically the gas-driven standby booster pumps are only run during power outages.

The LAS wells are not physically located at the El Rio Plant. These wells are operated remotely and only to augment UAS well production. An existing settling basin is sometimes used to remove settleable solids. While these wells are not subject to the SWT Rule, the water can be blended with UAS water in the clearwells for water quality consistency.

3. Discussion

3.1 Proposed Design Criteria

The goal of the proposed project is to satisfy the regulatory drivers as described in Section 2.2. While the final position of O-H customers towards treatment for iron and manganese is not known at this time, it will be assumed for the purposes of this TM that the objective is to meet both primary and secondary MCLs as mandated by DDW. In order to demonstrate how these regulatory drivers might be satisfied, eight different operating scenarios have been presented in **Table 7** and **Table 8** below. Each operating scenario excluding the first (the do nothing option) will include partial or full treatment of water from LAS wells. All of the operating scenarios are based on the following assumptions:

- Annual O-H pipeline demand is constant at 14,086 acre-feet per year or 12.6 million gallons per day (annual average from 1984 to 2014). See Section 3.3.4 for a discussion on potential future demand changes;
- Total peak production from UAS wells is 24,970 gpm. With nine (9) UAS wells total, average production from each UAS well is 2,775 gpm. The total peak production from LAS wells is 8,500 gpm. With three (3) LAS wells total, average production from each LAS well is 2,833 gpm. Since Well Nos. 12 and 13 are limited to 2,500 gpm, this number will be used instead.
- UAS and LAS wells will operate 24 hours per day, 7 days per week, 365 days per year (24/7/365). Interruptions to the proposed treatment process of LAS wells could potentially cause fouling of filtration units. Not all the LAS wells have to operate at the same time.
- In some scenarios, variable speed is proposed for the LAS wells. These scenarios were proposed under the assumption of operating 24/7/365 to potentially reduce the overall treatment capacity for iron and manganese removal. However, it can also be inferred that this could include a strategic operation wherein the LAS wells are not run during on-peak electrical rate hours.
- Typical water quality data is assumed from **Table 4**.
- Only LAS wells will be treated. Anticipated concentrations of iron and manganese from proposed treatment process is at non-detectable levels. UAS will not be treated, and will be blended with LAS wells.

	Table 7 – Descript	ions of Theoretical Operating	Scenarios
Scenario	Description	# of UAS Wells Operational	# of LAS Wells Operational
1	Do Nothing. No change to existing operations.	2 @ 2,634 gpm or 4 @ 1,317 gpm ⁽¹⁾	1 @ 1,500 gpm ⁽¹⁾
2	Treat one LAS well @ 50%	3 @ 2,494 gpm	1 @ 1,250 gpm (50% speed)
3	Treat one LAS well @ 75%	3 @ 2,285 gpm	1 @ 1,875 gpm (75% speed)
4	Treat one LAS well @ 100%	3 @ 2,078 gpm	1 @ 2,500 gpm (100% speed)
5	Treat two LAS wells @ 100%	2 @ 1,866 gpm	2 @ 2,500 gpm (100% speed)
6	Treat one LAS well @ 50% Blend one LAS well @ 50%	3 @ 2,078 gpm	2 @ 1,250 gpm (50% speed)
7	Treat one LAS well @ 75% Blend one LAS well @ 50%	3 @ 1,869 gpm	1 @ 1,875 gpm (75% speed) 1 @ 1,250 gpm (50% speed)
8	Treat one LAS well @ 100% Blend one LAS well @ 50%	2 @ 2,491 gpm	1 @ 2,500 gpm (100% speed) 1 @ 1,250 gpm (50% speed)

Note: (1) Values represent averages based on total annual production divided by the typical number of wells operational.

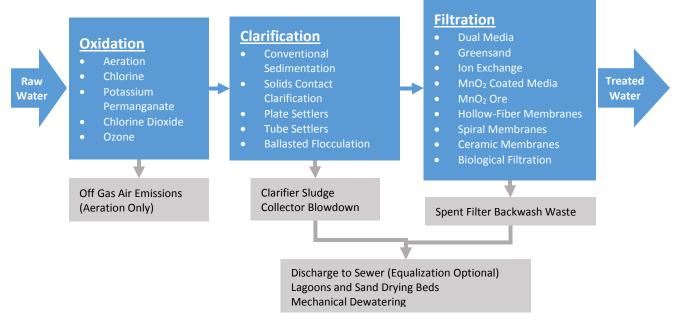

		Table 8	- Theoretical	Operat	ing Sce	narios	and The	ir Respe	ctive W	ater Qua	lities				
	Scenario	Well	Annual Production	Nitrate (NO3) in mg/L MCL = 45 mg/L				lron (Fe) in μg/L MCL = 300 μg/L				Manganese (Mn) µg/L MCL = 50 µg/L			
		System	(ac-ft/year)	Min	Avg	Max	AEP ⁹	Min	Avg	Max	AEP ⁹	Min	Avg	Max	AEP ⁹
	Do Nothing	UAS	8,496	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
1	(2014 Blend)	LAS	2,419	0.0	3.3	9.1	0.0%	306.7	638.9	2393.3	76.7%	116.7	196.9	396.7	97.2%
		Blend	10,915	0.8	17.0	71.1	7.8%	68.0	199.2	629.0	17.0%	25.9	43.6	87.9	21.5%
	Treat one LAS well @ 50%.	UAS	12,070	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
2	24/7/365	LAS	2,016	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/303	Blend	14,086	0.9	18.4	77.4	8.6%	0.0	65.6	112.8	0.0%	0.0	0.7	1.4	0.0%
		UAS	11,062	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
3	Treat one LAS well @ 75%, 24/7/365	LAS	3,024	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/303	Blend	14,086	0.8	17.1	71.7	7.9%	0.0	61.4	105.9	0.0%	0.0	1.1	2.1	0.0%
		UAS	10,053	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
4	Treat one LAS well @ 100%,	LAS	4,033	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/365	Blend	14,086	0.7	15.9	66.0	7.1%	0.0	57.1	99.0	0.0%	0.0	1.4	2.9	0.0%
	T	UAS	6,021	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
5	Treat two LAS wells @ 100%,	LAS	8,065	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/365	Blend	14,086	0.4	10.8	43.2	4.3%	0.0	40.2	71.3	0.0%	0.0	2.9	5.7	0.0%
		UAS	10,053	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
~	Treat one LAS well @ 50%,	LAS	2,016	0.0	3.3	9.1	0.0%	306.7	638.9	2393.3	76.7%	116.7	196.9	396.7	97.2%
6	Blend one LAS well @ 50%,	LAS	2,016	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/365	Blend	14,086	0.7	15.9	66.0	7.1%	43.9	146.5	437.3	11.0%	16.7	28.9	58.2	13.9%
		UAS	9,045	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
_	Treat one LAS well @ 75%,	LAS	2,016	0.0	3.3	9.1	0.0%	306.7	638.9	2393.3	76.7%	116.7	196.9	396.7	97.2%
7	Blend one LAS well @ 50%,	LAS	3,024	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/365	Blend	14,086	0.6	14.6	60.3	6.4%	43.9	142.2	430.4	11.0%	16.7	29.3	58.9	13.9%
		UAS	8,037	1.0	20.9	88.8	10.0%	0.0	74.0	126.7	0.0%	0.0	0.0	0.0	0.0%
_	Treat one LAS well @ 100%,	LAS	2,016	0.0	3.3	9.1	0.0%	306.7	638.9	2393.3	76.7%	116.7	196.9	396.7	97.2%
8	Blend one LAS well @ 50%,	LAS	4,033	0.0	3.3	9.1	0.0%	0.0	15.0	30.0	0.0%	0.0	5.0	10.0	0.0%
	24/7/365	Blend	14,086	0.6	13.3	54.6	5.7%	43.9	138.0	423.4	11.0%	16.7	29.6	59.6	13.9%

Table 8 suggests that operating scenarios two (2) through five (5) will not result in any probable exceedance of iron and manganese MCLs. Operating scenarios six (6) through eight (8) all resulted in a probable exceedance of nitrate, iron and manganese MCLs. It might be concluded that the design criteria be based on operating scenario five (5) because it produced the highest quality water. However, this scenario requires double the treatment capacity of scenarios two (2) through four (4) which all pose a low probability for exceedance of the nitrate MCL. Additionally, operating scenario five (5) does not eliminate the risk of exceedance of the nitrate MCL. Out of these operating scenarios two (2) through four (4), scenario four (4) poses the lowest probability for exceedance of the nitrate MCL out of the second operating scenarios two (2) through four (4), scenario four (4) poses the lowest probability for exceedance of the nitrate MCL and is therefore the recommended operating scenario. The proposed design criteria is presented in **Table 9** below.

Table 9 - Proposed Design Criteria									
Parameter Value									
No. of LAS Wells Operating Simultaneously	One (1)								
Treatment Capacity	3,500 gallons per mi	nute (maximum production of Well No. 14)							
Iron Load	DAILY: 0.64 mg/L	MAX: 3.8 mg/L							
Manganese Load	DAILY: 0.2 mg/L	MAX: 0.8 mg/L							

3.2 Available Types of Treatment

The general process for removal of iron and manganese follows three basic steps: (1) the oxidation of iron and manganese particles from soluble to insoluble forms, (2) clarification to remove the bulk of insoluble iron and manganese particles and protect downstream filtration systems and (3) filtration to remove the remainder of insoluble particles to the desired concentration levels which is typically to satisfy regulatory and consumer standards. An overview of the available treatment technologies is shown in **Figure 8**.

Figure 8 - Available Types of Treatment for Iron and Manganese Removal (AWWA Handbook)

This TM will briefly discuss each part of the process for treatment of iron and manganese and attempt to eliminate technologies that are not practicable to UWCD's El Rio Facility.

3.2.1 Chemical Sequestration

Chemical Sequestration is a form of treatment whereby a sequestrant (typically a polyphosphate) bonds with dissolved iron and manganese ions and forms a complex molecule that is soluble in water. This formed molecule removes the ability of iron and manganese to react with oxygen and therefore does not precipitate. Higher temperatures from heat sources such as boilers can break down the molecule and release iron and manganese making them available for precipitation. UWCD currently uses a product called AQUA MAG at Well No. 14 for this purpose.

Figure 9 - Well No. 14 and use of AQUA MAG Blending Phosphate

- Benefits:
 - Can be implemented easily by feeding into water source with controlled injection equipment;
 - Typically works well on concentrations that do not exceed:
 - 600 μg/L of iron;
 - 100 μg/L of manganese;
 - Low energy input;
 - Low capital cost.
- Draw-backs:
 - o Iron and Manganese are not removed and remain in water supply;
 - Heat can inadvertently reverse sequestration (at about 302°F for AQUA MAG);
 - o Continuous purchase of proprietary chemical is needed to mitigate iron and manganese;
 - Does not work on concentrations higher than those noted above.

3.2.2 Oxidation

Oxidation is the process whereby electrons are removed from iron and manganese atoms and transferred to atoms of an oxidant. This makes the iron and manganese atoms more available to bond with other atoms. Most oxidation reaction rates vary with pH, and all oxidation reactions are susceptible to other constituents that may attract the oxidant such as organic matter (compounds containing carbon). **Table 10** presents the most common oxidants used for iron and manganese treatment.

Table 10 - Oxidants Typically Used for Iron and Manganese Removal						
Parameter	Oxygen Ozone Chlorine Potassium (O ₂) (O ₃) (HOCl) (KMnO ₄)		Permanganate	Chlorine Dioxide (ClO ₂)		
Oxidant (mg) needed to oxidize 1.0 mg of Fe ²⁺	0.14	0.43	0.64	0.94	1.20	
Oxidant (mg) needed to oxidize 1.0 mg of Mn ²⁺	0.29	0.88	1.30	1.92	2.50	
Total Oxidant (mg) needed to oxidize 0.64 mg of Fe ²⁺ and 0.2 mg of Mn ²⁺	0.15	0.45	0.66	0.98	1.26	
pH needed to oxide Fe	>7.5	n/a	>8.0	>5.5	>5.5	
pH needed to oxide Mn	>9.0	n/a	>8.0	>5.5	>5.5	
pH needed for both	>9.0	n/a	>8.0	>5.5	>5.5	
Reaction time for Fe	15 min	Instantaneous	15-30 min	<20 sec	10 sec	
Reaction time for Mn	>1 hr	10-30 sec	2-3 hr	<20 sec	10 sec	

<u>Oxygen</u>

Oxygen is naturally abundant in the atmosphere (approximately 20% by volume) and is one of the most efficient oxidants for iron and manganese on a mass basis. Oxidation with oxygen often requires air that is forced from blowers or through turbulence and mixing caused by physical features. There are five different commercially available types of aerators on the market: (1) Aerated Basins, (2) Forced Air Tower, (3) Cascading Step Aerator, (4) Porous-Tube Pressure Aerator and (5) Venturi Device. The last two mentioned (4 and 5) will not be discussed further as they require substantial maintenance to avoid the accumulation of precipitate.

In an aerated basin, elevated steps can create the turbulence needed to infuse oxygen. This often requires a pump to lift the water to the top of the steps. Another option is coarse or fine bubble nozzles that infuse the air into a tank. Air to the nozzles must be provided through the use of compressors. In some instances, pure oxygen can be used for higher transfer efficiency. Examples of both types are shown in **Figure 10**.

Figure 10 - Cascading aerator at Lake Havasu (left) and in-tank aerator offered by EP Aeration (right)

A forced air tower and cascading step aerator operate in similar principal to the examples mentioned previously. WesTech (WesTech) Engineering offers both forced air towers and cascading step aerators. According to WesTech, a 2,500 gpm forced air tower would require 11 feet by 11 feet of space and 9,075 SCFM of air. The approximate motor input power for a motor this size ranges from 300 to 400 HP.

Figure 11 - Induced Draft Aerator (left) and Cascade Aerator (right) (WesTech Engineering)

Although there is not presently a cost for extracting oxygen from the air, all options require some footprint either small or large and require some energy input through pumps or compressors. Additionally, the simultaneous precipitation of iron and manganese using oxygen best occurs at a pH above 9.0. Some pH adjustment may be needed through the use of chemical. All of these factors would increase capital and operational costs.

<u>Ozone</u>

Ozone is an aggressive oxidant that naturally occurs in the Earth's stratosphere. Under normal lower atmospheric conditions, dissolved ozone in water is unstable and will break down into dioxygen gas with a half-life of 8 to 30 minutes. Ozone is one of the best choices for rapid oxidation of iron and manganese and does not have a pH preference. Additionally, ozone serves as a powerful disinfectant capable of destroying pathogens. Ozone is typically generated on-site using pure oxygen gas as it cannot be stored easily with its short half-life. Additionally, it requires a contactor built with materials capable of withstanding the aggressive chemical. The Calleguas Muncipal Water District (CMWD) owns and operates an ozone system as shown in **Figure 12**.

Figure 12 - Ozone generator (left) and pure oxygen storage (right) at CMWD's Lake Bard Treatment Plant

The use of ozone would require construction of an on-site generator, pure oxygen storage and contactor tanks. All of these factors would increase capital and operational costs.

Chlorine

Chlorine is the most common oxidant used in water treatment. It comes in several forms including gaseous chlorine, solid calcium hypochlorite (68%) and liquid sodium hypochlorite (12%). It is an efficient oxidant for removal of iron and manganese on a mass basis as shown in **Table 10**. The rate of iron and manganese oxidation is affected by the pH of the water. Additional chlorine is sometimes added to bring the pH up to 8.0 for optimal conditions. In the presence of organic matter (or compounds containing carbon), chlorine has the potential to form disinfection byproducts such as trihalomethanes (THMs) and haloacetic acids (HAAs) which are potentially cancer causing compounds. However, the risk of these compounds forming is lessened through chloramination.

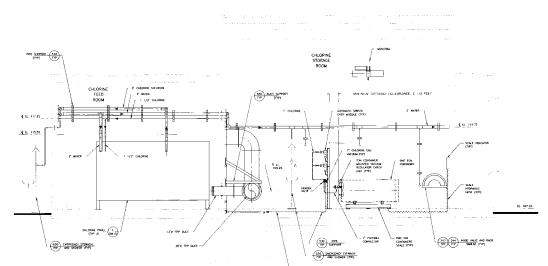


Figure 13 - El Rio Plant Existing Gaseous Chlorine Disinfection System ("As-Built" Plans)

Gaseous chlorine is currently used for disinfection at the El Rio Plant. The current cost of chlorine is approximately \$0.31 per pound. Since the facilities are already in place, there would only be the capital cost of plant piping and controls and operational cost of additional chlorine demand for iron and manganese treatment.

Potassium Permanganate

Some water utilities are using potassium permanganate (KMnO₄) for disinfection. KMnO₄ may be selected in some cases because it does not have the same potential to form disinfection byproducts like chlorine. It comes in solid and liquid forms and exhibits a unique purple color that can sometimes cause discoloration of the treated water. On a mass basis, potassium permanganate is not as efficient as chlorine for the oxidation of iron and manganese. However, KMnO₄ reacts more vigorously than chlorine with iron and manganese implying a shorter reaction time and KMnO₄ is not pH dependent. Therefore, in some instances, KMnO₄ can be a more effective oxidant.

 $KMnO_4$ can be magnitudes higher in cost than chlorine on a mass basis (4 to 5 times higher). One supplier, Parchem, has quoted \$3.06 per pound for crystalline $KMnO_4$ for quantities over one ton in drums or pails. If $KMnO_4$ were proposed at the El Rio Plant, it would not contribute to the chloramine residual in the O-H Pipeline. Additional chlorine would be needed to provide this residual. The construction of potassium permanganate facilities would increase the capital cost of an iron and manganese treatment plant and may result in higher chemical costs.

Chlorine Dioxide

Chlorine dioxide may be used for iron and manganese oxidation because it is not pH dependent and has a rapid reaction rate. The presence of organics in the source water competes for the oxidant which can greatly slow down the reaction time. One advantage of chlorine dioxide over chlorine is that it does not have the potential to form THMs with organics. However, there is a potential to form chlorite in the presence of the manganese ion which has an MCL of 1.0 mg/L. Chlorine dioxide does not react with ammonia to form chloramines. Chlorine dioxide comes in gaseous and liquid forms. The gaseous form is typically generated on-site because of its explosion potential. Although there might be some merit in the use of chlorine dioxide for iron and manganese treatment, there would be increased capital costs for the retrofitting of the existing chlorination facility.

3.2.3 Clarification

Clarification is needed when high concentrations of iron and manganese are present which would result in low filter run times and very large quantities of backwash water used to maintain efficient filter operation. The AWWA suggests that when combined concentrations of iron and manganese are greater than 5.0 mg/L, a cost-benefit analysis should be conducted to determine whether clarification is beneficial. The proposed design criteria in **Table 9** suggests that this is not the case with a combined iron and manganese load that averages 0.84 mg/L and 4.6 mg/L at a maximum. There are several types of clarification as indicated in **Figure 8** that include conventional sedimentation basins, plate and tube settlers, solids-contact clarifiers, dissolved air flotation and ballasted flocculation. All of these clarification types operate on the same principle, which is to provide quiescent space for particles to reach settling velocity (approximately 0.053 feet per minute for iron and manganese precipitates). All of these options were reviewed in terms of surface loading rates and space requirements as presented in **Table 11**.

Table 11 - Comparison of Different Clarification Options						
ltem	Conventional Sedimentation Basin	Plate and Tube Settlers	Solids Contact Clarifier	Dissolved Air Flotation	Ballasted Flocculation	
Coagulant	Not Required	Not Required	Required	Required	Required ⁽¹⁾	
Surface Loading Rate (gpm/ft ²)	0.4 to 0.5	0.4 to 2.0	1.0 to 3.0	6.0 to 10	Up to 30	
Space Required @ 3,500 gpm	≤ 8,750 ft²	≤ 1,750 ft²	≤ 4,375 ft²	≤ 583 ft²	≥ 291 ft²	
Detention Time	240 min				< 15 min	
Depth Required	12.83 ft					

Notes: (1) In addition to coagulants, requires the recycled flow of sand to act as a "ballast" for flocculated particles.

There is a significant capital cost to construct a conventional sedimentation basin which has been estimated at \$1.3M (based on USEPA cost curve data). Plate and tube settlers are estimated to be approximately 70% of conventional sedimentation basin costs. Other options may prove to be less capital cost intensive, but since the combined concentration of iron and manganese to be treated does not exceed 5.0 mg/L, these options were not investigated further.

Pilot plant testing has confirmed that removal of iron and manganese to non-detect levels is possible without clarification using Greensand Plus or LayneOx granular media.

3.2.4 Filtration

Biological Based Filtration

There are many types of bacteria that can oxidize iron and manganese ions into precipitate forms. Under normal circumstances, these bacteria are found in wells and distribution systems and are a nuisance. However, the bacteria can also be used in treatment. In the case of iron, bacteria will typically oxidize the ferrous (Fe^{2+}) form to the ferric (Fe^{3+}) form. In the case of manganese, bacteria will typically oxidize the manganese to manganese dioxide (MnO_2). The following are the most common types of bacteria used:

Figure 14 - Species of Iron and Manganese Oxidizing Bacteria

Bacteriological filtration requires precise control over the operating environment to best suit the iron and manganese oxidizing bacteria species. This often requires the addition of air to increase dissolved oxygen content. Infilco Degremont manufactures two separate systems for the removal of iron and manganese under the FERAZUR[®] and MANGAZUR[®] names respectively (see **Figure 15**). The benefits and drawbacks of these systems are mentioned in the following paragraphs.

Figure 15 - Infilco Degremont (now Suez) FERAZUR[®] and MANGAZUR[®] System

Benefits:

- Does not require the addition of chemical;
- Highest purported filter rates ranging from between 8 to 24 gpm/ft²;
- Process forms denser iron precipitates offering increased capacity and longer run times;
- Media life is typically around 10 to 15 years;

Draw-backs:

- Requires a two-stage process as the environmental conditions to support iron and manganese oxidizing bacteria vary:
 - Fe: DO of 1 to 3 mg/L, pH of 6.5 to 7.2

- Mn: DO greater than 5, pH greater than 7.5
- Increased energy cost through aeration;
- Susceptible to compounds that are toxic to bacteria such as: chlorine, hydrogen sulfide, heavy metals, ammonia, phosphates, organics and hydrocarbons;
- Creates a waste sludge from backwashing filters that must be dewatered and disposed off-site;
- Intermittent operation is difficult as bacteria can only survive up to 6 months.

It should be noted that a biological filtration option exists for removal of nitrates. While this could potentially be used to treat UAS wells and mitigate the need to treat the LAS wells for iron and manganese, the scale of such a plant would be magnitudes larger due to the volume of water being treated. Additionally, it would not provide supply flexibility in the event of UAS supply shortages.

Granular Based Filtration

Granular media is the most common method of filtration for iron and manganese removal in large water systems. Ion exchange is also used, but is less cost effective on large scales. The most common types of granular media are shown in **Table 12**. Most granular media is coated with manganese dioxide (MnO₂) to act as a catalyst and accelerate the oxidation of iron and manganese. An oxidant (potassium permanganate or chlorine) is used to continuously or intermittently regenerate the manganese dioxide coating. Iron and manganese precipitates are filtered out while soluble manganese can be adsorbed into the coating. In the presence of organics, iron can react with the organics creating complexed forms that are not removed and the organic material may block adsorption sites. A recent water quality report dated December 15, 2015 from Well Nos. 12, 13 and 14 indicated Total Organic Carbon (TOC) concentrations as 0.9 mg/L, 1.0 mg/L and < 0.5 mg/L respectively. This could have some bearing on oxidant demand and ability of granular media to effectively remove the iron and manganese.

Parameter	Dual Media	Greensand	MnO₂ Sand	Pyrolusite
Became Commercially Available	1900s	1930s	2005	1930s
Description	Anthracite (A) and Sand (S)	Glauconite ore coated with MnO ₂	Sand coated with MnO ₂	MnO₂ Ore
Effective Size	1.2 (A) and 0.55 (S)	0.30 to 0.35 mm	0.30 to 0.35 mm	0.3 to 0.5 mm
Uniformity Coefficient	1.6 (both)	1.6	< 1.6	1.7
Specific Gravity	1.6 (A) and 2.6 (S)	2.4	2.4	4.0
Typical Bed Depth ⁽¹⁾	24 in (A) and 12 in (S)	18 in	18 in	36 to 48 in
Regeneration ⁽¹⁾	KMnO₄ or HOCl	KMnO₄ required	KMnO₄ or HOCl	KMnO₄ or HOCl
Manufacturers	Clack, WI	Inversand, NJ ⁽²⁾	Inversand, NJ Clack, WI	Clack, WI, Layne
Air Scour ⁽¹⁾	Optional	Optional	Optional	Required
Abrasion Resistance	High	Low	High	High
Filter Loading Rate ⁽¹⁾	2.5 to 6 gpm/ft ²	Up to 3 gpm/ft ²	Up to 12 gpm/ft ²	Up to 12 gpm/ft ²
Backwash Rate ⁽¹⁾	10 gpm/ft ²	Up to 12 gpm/ft ²	> 12 gpm/ft ²	25 gpm/ft ²
Filter Media Capacity ⁽¹⁾	Unavailable	64,800 mg/ft ²	Up to 77,800 mg/ft ²	19,440 mg/ft ³
Filter Media Life ⁽¹⁾	Unavailable	> 10 years	> 10 years	> 10 years

(1) Purported based on manufacturer literature or available pilot testing reports

(2) Does not manufacture manganese greensand (glauconite) as of November 1, 2012

Dual media (containing anthracite and sand) is commonly used for iron and manganese removal. Greensand is more commonly used. The only North American manufacturer of original Greensand made of glauconite (a soft mica material) stopped production in 2012. An alternative to Greensand is MnO₂ sand (often referred to as "Greensand") which exhibits higher abrasion resistance and can tolerate higher filter loading rates. Pyrolusite is an ore consisting of nearly pure MnO₂ which does not require regeneration. However, because of the higher specific gravity, large backwash rates are needed to fluidize the bed which sometimes needs air scouring.

A local example of MnO₂ sand filtration is the Steckel Water Facility (SWF) at 200 South Tenth Street in Santa Paula, California. UWCD staff visited this location on November 11, 2015 and pictures are provided in **Figure 16**. The SWF is fed by three wells with capacities of approximately 3,000 gpm. Feed water is dosed with sodium hypochlorite prior to filtration which contains iron and manganese concentrations that are approximately 0.1 mg/L and 0.2 mg/L respectively. The plant consists of three horizontal tanks that are 10 ft in diameter and 25 ft in length. Each tank consists of 3.5 ft of free board, 0.5 ft of anthracite coal, 2.0 ft of GreensandPlus (by Inversand Company), 1.5 ft of support gravel and 2.5 feet of concrete fill. Two tanks are actively used with filter surface loading rates of 8 to 10 gpm/ft². Filter run times exceed two days and are backwashed at over 4,000 gpm. Water quality reports of the filter effluent show non-detectable

levels of iron and manganese. The SWF was designed with a peak treatment capacity of 10 mgd. The Greensand equivalent media was only replaced once after 15 years of service.

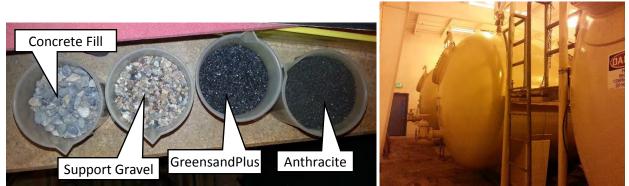


Figure 16 - Santa Paula Steckel Water Facility Filter Media (left) and horizontal tanks (right)

Proprietary granular media systems are available through manufacturers such as Filtronics. A local example of a proprietary granular media system is the Round Mountain Water Treatment Plant (RMWTP) located near the California State University Channel Islands Campus and operated by the Camrosa Water District. UWCD staff visited the RMWTP on January 5, 2016 and a picture is provided as **Figure 17**. The RMWTP started operating in 2014 and cost \$4.3 million to construct. The RMWTP consists of wells that are pre-treated using sodium hypochlorite and Filtronics Electromedia[®] before cartridge filters and reverse osmosis. Filtronics purports that Electromedia[®] can achieve filter surface loading rates of up to 18 gpm/ft². Feed water at the RMWTP is pre-chlorinated at a concentration of 3 mg/L and contains iron and manganese concentrations that are approximately 0.5 mg/L. The RMWTP is currently operating at surface loading rates of 9 gpm/ft² with backwash rates of 2,000 gpm for 10 minutes. Total design capacity at the RMWTP is 1.0 mgd.

Figure 17 - Filtronics Electromedia System at Camrosa's RMWTP in Camarillo

Membrane Based Filtration

Membrane filtration is not commonly employed for iron and manganese removal because of the tendency for oxidized iron to foul membranes. Acid is sometimes used to prevent fouling. Some membranes require pre-treatment systems upstream to remove high concentrations of iron and manganese. Additionally,

membranes require higher feed pressures than other types of filtration and they may not fully remove manganese. Membranes do offer some benefits which are summarized below:

Benefits:

- Reduction in turbidity;
- Pathogen removal due to filter opening sizes of 0.05 to 1.0 microns;
- Less backwash water and higher recovery versus granular media;
- Not pH dependent.

Drawbacks:

- Iron oxide can foul membranes;
- Sometimes requires acid for backwashing;
- Membranes are sensitive to damage from strong oxidants which may require a tank upstream of the membranes to oxidize iron and manganese;
- Requires higher feed pressures than other types of filtration;
- May not fully remove manganese.

There are several manufacturers of membranes used to remove iron and manganese including Pall, Koch and GE. Considering the need for an oxidation tank upstream of membranes, and the risks of fouling and incomplete removal, pursuing this option is not recommended at this time.

Resin Based Filtration

Packaged ion exchange systems for iron and manganese removal are very common household and industrial treatment solutions. Ion exchange systems also soften the water (removes dissolved calcium and magnesium ions) making it more desirable for consumers. Ion exchange can use either cationic (basic and donates electrons) or anionic (acidic and receives electrons) exchange resins. Resins are often made from synthetic materials and are saturated in concentrated amounts of sacrificial exchange ions. The most common ion exchange system used for the removal of and iron and manganese is cationic with sodium ions used to regenerate the exchange resin. The benefits and draw-backs of ion-exchange are listed below:

Benefits:

- Can remove hardness;
- May potentially remove nitrates with the appropriate exchange resin;
- Not pH dependent;
- Filter surface loading rates of 6 to 12 gpm/ft² may be achieved;

Drawbacks:

- Metal oxides can plug exchange resins;
- Backwash must be non-chlorinated water;
- Requires frequent regeneration of exchange resins at high concentrations of iron and manganese;
- Sodium chloride which is commonly used for regeneration results in a brine discharge that is problematic for sewers;
- Typical exchange resin life is 4 to 8 years;
- Long term shut down requires exchange resin to be in an exhausted state and a regeneration cycle is needed at start-up.

3.3 Integrating New Treatment Process into Existing Facilities

3.3.1 Consideration of Greensand Filter Treatment

Although there are several treatment solutions that may be an appropriate fit for the El Rio Facility, this TM will investigate the use of an established technology as a baseline comparator, Greensand Filtration. In this case, the word "greensand" implies newer alternative manganese dioxide coated granular media. Preliminary design criteria were developed based on information available from filter media manufacturers. The target design capacity was provided by **Table 9**. A conservative value of 3 gpm/ft² was initially used, however, it has since been updated based on pilot plant testing results. The preliminary greensand filter design calculations are presented in **Table 13** below.

Pilot Plant testing has confirmed that a higher filter surface loading rate of 6 gpm/ft² can be reasonably maintained using Greensand Plus media. The LayneOx media achieved a filter surface loading rate of 9 gpm/ft² with full removal of iron and manganese, but had difficultly passing SDI testing. Therefore, all preliminary design calculations have been updated based on 6 gpm/ft².

Table 13 - Greensand Filter Preliminary Design Calculations				
Parameter	Value	Description		
Type of Operation	Catalytic oxidation usir	ng continuous regeneration (chlorine)		
Filtration Media	15-18 inches of anthracite			
	15-24 inches of manganese dioxide coated greensand (glauconite)			
Filtration Capacity	64,800 mg/ft ² of Fe	GreensandPlus by Iversand Company		
	and Mn (combined)			
Design Flow Rate	3,500 gpm	From Table 9		
Estimated Chlorine Demand	1.2 mg/L			
	52.2 lb/day			
Design Filter Surface Loading	6 gpm/ft ²	Conservative value due to high iron and		
Rate		manganese concentrations		
Total Filter Surface Area	584 ft ²	Active surface area		
Number of Filters	6	Four active, one in backwash, one for standby		
Surface Area per Filter	146 ft ²			
Horizontal Cylindrical Tank	12 ft diameter x	12 feet is considered a wide load by truck		
Dimensions	12.2 ft length			
Total Treatment Capacity per	9.5 kg of Fe & Mn			
Filter	(combined)			
Estimated Filter Run Time	2.4 days (avg. daily)			
	0.4 days (max daily)			
Backwash Rate	12 gpm/ft ²			
Backwash Duration	10 min			
Total Backwash Volume	29,700 gal/day	Decant to be sent back to groundwater recharge basins.		
Total Mass of Iron and	35 lb/day			
Manganese Precipitates				
Generated				

3.3.2 Potential Locations

Three potential locations for an iron and manganese treatment plant have been considered as part of this TM. These locations resulted from multiple discussions with staff. The key factors for consideration are space available, grading requirements, proximity to feed wells, chlorination, clarification (existing settling basin), backwash water (O-H Pipeline booster pumps), plant effluent (existing clearwell manifold) and conflicting utilities. The three potential locations are shown as "A", "B" and "C" in **Figure 18** below. In evaluating each location based on the key criteria, weights were assigned to emphasize the significant impact to capital costs. A weight of "1" is likely to have little significant impact to capital costs whereas "3" will likely have the highest significant impact to capital costs. Each location has been ranked for all key factors and the results are presented in **Table 14**.

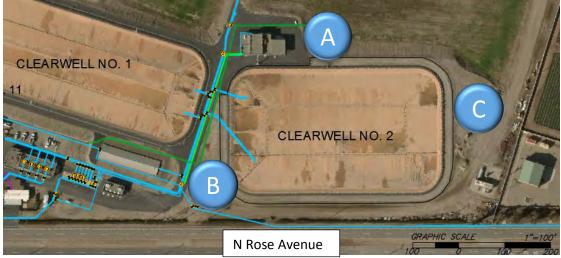


Figure 18 - Potential Locations

Table 14 – Comparison and Ranking of Potential Site Locations				
Description	Weight	Location A	Location B	Location C
Space Constraints ¹	1	1 East & South	③ All Directions	 North, East & South
Available Space ¹	2	1 Unconstrained	2 19,000 sq ft	3 18,000 sq ft
Site Grading Requirement	3	 Bulk Grading 	 Minor Grading 	 Minor Grading
Distance from Well No. 12 & 13	3	2 4,500 ft	2 4,500 ft	1 4,200 ft
Distance from Well No. 14	3	② 3,500 ft	(1) 3,000 ft	③ 3,600 ft
Oxidation: Distance to Existing Chlorine Building	1	① <100 ft	② >300 ft	(2) >300 ft
Clarification: Distance to Existing Settling Basin	3	2) >500 ft	① <100 ft	③ >800 ft
Backwash: Distance to Existing O-H Pipeline	2	2 >900 ft	① >400 ft	③ >1,100 ft
Plant Effluent: Distance to Clearwell Influent Manifold	2	① >200 ft	② >250 ft	③ >600 ft
Potential Utility Conflicts	2	2 4xStormdrains(3x24",1x6")	 ③ Communications Bank; Electrical Bank; Stormdrain (24"); Well No. 12 & 14 Flushing Pipe (12") 	1 None
Weighted Rank		2	1	3

Note: (1) This factor accounts for possibility of expansion.

Location A appears to be a suitable location as it is unconstrained allowing for expansion and close to the existing chlorination building and clearwell influent manifold. However, this site requires the greatest degree of bulk grading to provide a foundation for the new treatment plant. Additionally, it would require the relocation of four stormdrains that discharge into Basin No. 8 (see **Figure 19**). Since stormdrains are elevation controlled structures, it might be more reasonable to select a location west of the chlorination building. However, this would increase the distance to important facilities and storm drains can be relocated.

Figure 19 - Location A Stormdrain Utility Conflicts

Location C is distant from the chlorination building, existing settling basin, O-H pipeline and clearwell influent manifold. However, this location is less constrained compared to Location B allowing expansion and requires minimal grading. Additionally, it is closer to Well No. 13 which has the greatest degree of hydraulic limitation.

Location B appears to be the best choice for a new treatment plant. This location is the closest to the existing settling basin and O-H pipeline. While the site is further away from the chlorination facility than Location A, this presents only a minor capital cost considering the small pipe diameter needed for chlorine injection. The greatest challenges with this location will be managing the utility conflicts and connection to the existing clearwell influent manifold. All of these utilities can be relocated at cost and are shown in **Figure 20**.

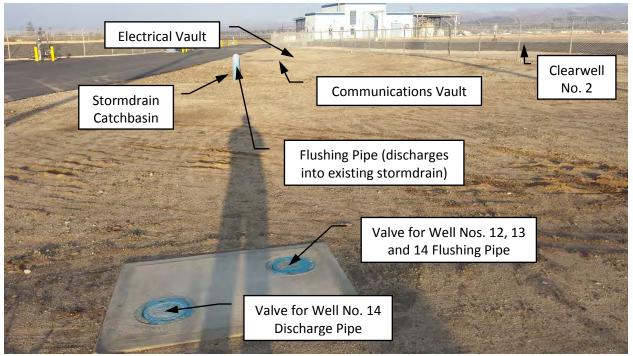


Figure 20 - Location B Existing Utility Conflicts

3.3.3 Hydraulic Considerations (Existing Well Nos. 12, 13, 14 and Booster Pumps)

A conceptual level hydraulic analysis was conducted as part of this TM. The analysis only considered Location B as presented in **Section 3.3.2** for the future site of a greensand pressure filter treatment system. An overall hydraulic profile schematic is shown in **Figure 21**. The intent of the analysis is to provide guidance on key improvements that might be needed to complete the design.

Greensand filters are typically constructed with mixed media including anthracite and gravel. For this analysis, assumptions were made regarding filter media material, media depths and head losses as shown in **Table 15**. Detailed design might indicate head losses that are lower or higher than the figures shown in the table.

Table 15 - Head Loss Through Conceptual Greensand Filter (Clear Water)					
Media Material	Media Depth	Normal Flow (3 gpm/ft^2)	High Rate Flow and Backwash (12 gpm/ft^2)		
Anthracite	18 in	0.2 ft	0.9 ft		
Greensand	24 in	2.1 ft	8.8 ft		
Fine Gravel	18 in	Negligible	0.2 ft		
Coarse Gravel	36 in	Negligible	Negligible		
Total for All Media	96 in	2.3 ft	9.9 ft		

The existing operation consists of Well Nos. 12, 13 and 14 either discharging into the existing settling basin or into the clearwell influent manifold. The proposed operation would divert water using the existing well effluent manifolds and into one of six parallel filters as shown in **Appendix 7.5**. Head loss calculations were

performed through the proposed conveyances to the new greensand filters (see **Appendix 7.6**). A summary of these calculations is presented in **Table 16**.

Description	Head at	Head Loss Through Conveyance to Filters	Available Head			
	Rated Capacity		At Filter Influent ⁽¹⁾	At Filter Effluent (Normal Flow)	At Filter Effluent (High Rate Flow)	
Well No. 12	468	17.7	48.7	46.4	38.8	
Well No. 13	360	3.6	7.8	5.5	-2.1	
Well No. 14	432	53.9	76.9	74.6	67	
Booster Pumps	109	5.1	73.5	63.6	63.6	

Well Nos. 12, 14 and booster pumps all appear to have sufficient head to feed pressure filters. However, static and pumping groundwater levels have been dropping particularly during an extended period of drought between 2011 and 2014 (see **Appendix 7.2**). In 2014, the pumping groundwater level at Well No. 13 dropped to the top of the pump bowls rendering it incapable of providing sufficient head to proposed pressure filters. Additional column pipe and pump bowl stage is recommended at Well No. 13.

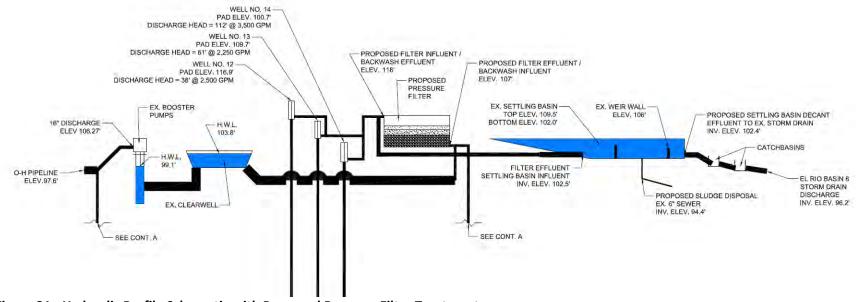


Figure 21 - Hydraulic Profile Schematic with Proposed Pressure Filter Treatment

3.3.4 Demand Considerations

O-H Pipeline demand has remained fairly consistent at 14,000 ac-ft per year on average as shown in **Figure 7**. All of the operating scenarios discussed in **Section 3.1** were based on this average annual demand. However, there is a potential scenario that O-H Pipeline demand will increase in the future. This increase may arise from new Municipal and Industrial customers in the Oxnard Plain. Peak demand may also be a significant factor as some of the O-H Pipeline customers partially rely on imported State Water Project water which is vulnerable to earthquakes or other disasters. In an emergency situation, demand would need to be met with the only other available sources of water which is local supplies or water pumped from the El Rio well field. This could imply an increase in demand for LAS well water at the El Rio Facility and potentially require a larger iron and manganese treatment system. This may make locations such as Location A and C as discussed in **Section 3.3.2** more favorable as they have more room to expand compared to Location B.

O-H Pipeline demand is also subject to decreases in demand resulting from a number of factors such as: (1) increased water conservation, (2) conversion of agricultural user's irrigation water source from the Municipal and Industrial (M&I) O-H Pipeline supply to alternative sources and (3) Fox Canyon Groundwater Management Agency (FCGMA) ordinances resulting in a reduction in pumping allocations. In order to best accommodate for decreases in demand, the future iron and manganese treatment plant would need to be compartmentalized with the ability to shut down tanks or sections of tanks for efficiency purposes.

3.3.5 Supply Considerations and Drawdown Evaluation (LAS Groundwater Supply)

Perhaps one of the most pressing concerns in Ventura County is the overdraft of the upper and lower aquifer systems. Potable demand depends on a number of factors and is affected by population growth, land use, drought and water conservation. The LAS has been affected by agricultural irrigation demand which has been increasing in recent years. The static groundwater levels in the LAS at Well Nos. 12, 13 and 14 have been falling at a rate of approximately 0.67 to 1.17 feet per year. This brings into question the sustainability of operating one of the LAS wells at 2,500 to 3,500 gpm in lieu of UAS pumping, 24 hours per day, 365 days per year. This would equate to the withdrawal of 4,033 to 5,645 ac-ft of water from the LAS each year.

A theoretical evaluation was performed on the additional groundwater drawdown resulting from continuous pumping of 3,500 gpm from the LAS at Wells Nos. 12, 13, and 14. Impacts to groundwater levels resulting from the increased pumping at Wells Nos. 12, 13, and 14 were evaluated using the Cooper-Jacob (Cooper and Jacob, 1946) simplified solution to the Theis equation for time-dependent drawdown in a confined aquifer, below:

$$s = \frac{2.3Q}{4\pi T} * \log \frac{2.25Tt}{r^2 S}$$

Where:

- s = theoretical drawdown at a specified distance from a pumped well
- Q = pumping rate at the pumped well
- T = transmissivity of the aquifer
- t = time since the start of pumping
- r = the specified radius (distance) from the pumped well for which drawdown is being calculated

S = storage coefficient for the aquifer

Input values for the Cooper-Jacob solution were determined as follows:

- *Q* (pumping rate)—Specified values for which additional drawdown (resulting from pumping at rates higher than current amounts) was forecasted.
- *T* (aquifer transmissivity)—A map of aquifer "transmissibility" prepared by the California Department of Water Resources (CDWR, 1975) shows transmissivities in the El Rio area in the range from 50,000 to 100,000 gallons per day per foot (gpd/ft). The average of transmissivity values yielded by aquifer tests conducted at Wells Nos. 12, 13, and 14 at the time of their construction (Geotechnical Consultants, Inc., 1983a, 1983b, and 1983c) was 48,000 gpd/ft. Specific capacity of the wells was reevaluated during step draw-down pumping tests conducted in 2014 (Southern California Edison) and found to be higher than the 1983 values, on average, indicating an average transmissivity of approximately 70,000 gpd/ft. This value was used in the drawdown analysis, and is near the midpoint of the transmissivity range reported by CDWR (1975).
- *t* (time since start of pumping)—The elapsed time for the evaluation was specified as 10 years, although drawdowns at other time frames were also evaluated, for comparison.
- *r*(radius)—Distances between pumped wells were estimated from maps. The value for *r* used to calculate theoretical drawdown at a well resulting from pumping at that well was 1.17 feet, which is the radius of the casing in Wells Nos. 12, 13, and 14.
- *S* (storage coefficient)—Aquifer storage coefficient was conservatively assumed to be 0.0001, which is at the lower end of typical storage coefficient values for confined aquifers. A storage coefficient of 0.001 was input to the analysis to test sensitivity of this parameter, and calculated drawdowns were approximately 15 feet (10 to 15 percent) less.

Using the principle of superposition (Todd, 1980), drawdown at a particular point resulting from pumping of multiple wells was calculated as the sum of drawdowns caused by each well individually. The theoretical drawdown in the aquifer takes the form of a "cone of depression" around each pumping well; pumping from more than one well results in intersecting cones of depression. Additional drawdown within a pumped well results from head (water-level) losses caused by turbulent flow through the well screen and in the aquifer immediately adjacent to each pumped well, due to the steep hydraulic gradients in these areas. The ratio of theoretical to total drawdown in a well is termed well efficiency--efficiency of most production wells is in the range from 50 to 80 percent, meaning that total (actual or measured) drawdown is typically 1.25 to 2 times the theoretical drawdown predicted by the Theis equation (or Cooper-Jacob simplified solution). For this evaluation of drawdown, the total drawdown *at each pumped well* caused by pumping *at that well* was calculated using the following equation:

$$s_{Total} = \frac{s_{Theoretical}}{well \ efficiency}$$

Where:

 S_{Total} = total drawdown resulting from both theoretical drawdown and well losses $S_{Theoretical}$ = theoretical drawdown estimated using the Cooper-Jacob solutionwell efficiency= well efficiency reported by Southern California Edison (2014)

Forecasted total additional drawdown after 10 years at Well Nos. 12, 13, and 14 resulting from increased pumping at those wells ranges from 106 to 130 feet, based on this evaluation. **Appendix 7.3** provides

details regarding the individual components of drawdown resulting from each well, and indicates that most of the additional drawdown forecasted to occur at each well (60 to 80 feet) is caused by pumping at that well, with smaller (20 to 30 feet) drawdown components caused by pumping at the other pumping wells. The decrease in LAS static groundwater level over 10 years, assuming constant conditions throughout the Oxnard Plain, is anticipated to be approximately 30 feet. This was calculated based on the difference between the theoretical 10-year and 30-day drawdowns.

3.3.6 Oxidant Considerations (Existing Chlorination System)

The existing chlorination facility at the El Rio Plant has a total storage capacity of 18,000 lb. of gaseous chlorine. Currently, the facility operates with only 8 cylinders of chlorine for a total of 16,000 lb. An additional cylinder can be added without modifications. There are two banks of chlorine cylinders containing two cylinders each that feed the chlorinators. The maximum feed rate from each bank is approximately 1,120 lb. per day, but can only realistically feed only 800 lb per day due to freezing of the feed lines. The other four cylinders are not connected to any bank and are kept within the facility on standby. The standby cylinders are exchanged by use of overhead crane and staff wears respiratory gear while performing the exchange. The facility was constructed with an emergency fume scrubber that can evacuate and treat 2,350 lb of chlorine gas.

Figure 22 - Existing Chlorine Gas Cylinders (Left) and Pumps (Right)

The average chlorine demand at the El Rio Plant as shown in **Figure 23** is approximately 240 lb. per day which equates to 8.2 lb./ac-ft or 3 mg/L. The chlorine residual leaving the plant is approximately 2.05 mg/L and therefore nearly 1 mg/L of chlorine is consumed for disinfection. The peak demand occurs in the summer when the O-H Pipeline demand is high which was 458 lb in 2015. The lowest demand occurs in the winter. The average and peak chlorine demand suggests that under normal conditions, the El Rio Facility has a minimum one month supply of chlorine. If an additional 50 to 200 lb. of chlorine were added on a daily basis, the available stored supply could drop as low as 24 days. Given that there are other factors to consider such as emergency power availability, this concern would need to be discussed and addressed with DDW during design.

Chlorine demand for iron and manganese removal using greensand was originally estimated at 1.2 mg/L. The actual chlorine demand during pilot plant testing was 0.73 mg/L for Greensand Plus and 1.2 mg/L for LayneOx. Considering the average concentrations of iron and manganese during pilot plant testing were slightly lower than historical averages, the original estimate is conservative and will be used for design purposes.

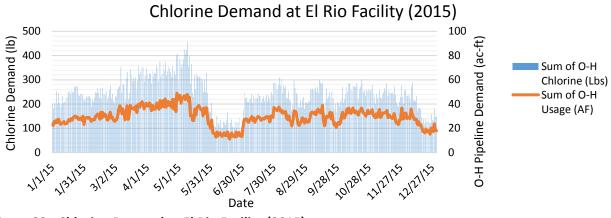


Figure 23 - Chlorine Demand at El Rio Facility (2015)

Although it is not currently anticipated that another form of oxidant will be needed for iron and manganese treatment for greensand filtration, it is possible that the slow reaction of chlorine with manganese would require additional contact time or upstream detention.

During pilot plant testing, the chlorine injection point was moved upstream to allow for an additional 30 seconds of contact time. Based on laboratory testing results, full manganese removal was achieved with and without the additional contact time. Shorter filter run times were observed with the additional contact time due to a "blinding effect" or accumulation of iron precipitates on the filter surface.

3.3.7 Control Considerations

The El Rio Facility uses Rockwell FactoryTalk[®] Supervisory Control and Data Acquisition (SCADA) software and an Allen Bradley ControlLogix[™] Programmable Logic Control (PLC) for data acquisition. Process PLCs are connected to the main PLC using a fiberoptic backbone and various forms of Ethernet. The nearest network switch to the proposed location "B" is less than 300 feet away as shown in **Figure 24**. A new Allen Bradley CompactLogix[™] PLC for the proposed Greensand Filtration Plant can be connected to the master PLC at this location.

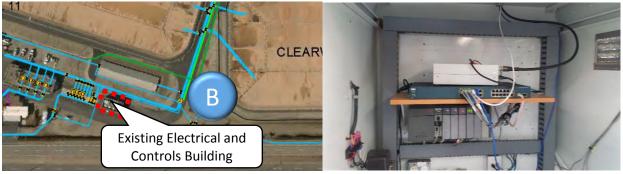
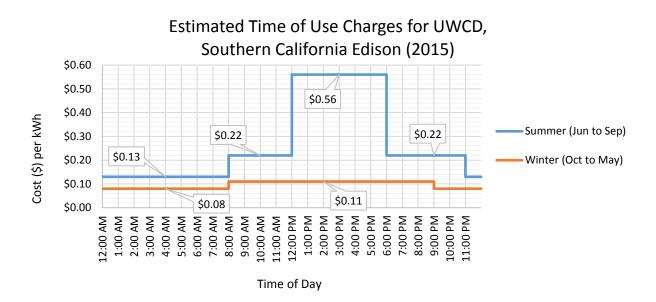


Figure 24 - Existing Electrical and Controls Adjacent to Proposed Location "B", Existing Switch (Right)


3.3.8 Electrical Considerations

In the same building shown in **Figure 24**, the existing "MCC-C" contains a spare 480 volt 80 amp breaker that is available for the greensand filtration plant (see **Figure 25**). At this time, it is not anticipated that any large motors will be necessary for operation of the proposed plant.

Figure 25 - Existing MCC-C (Left) and Spare Circuit Breaker (Right)

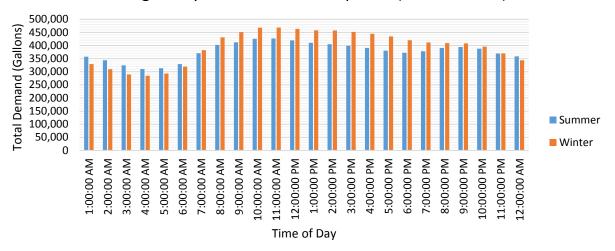

The El Rio Facility is subject to Southern California Edison's (SCE) Time-of-Use (TOU) charges. The TOU program is a statewide initiative to ensure all users have a reliable source of power when needed. During the summer months (June to September), there are different rates for three discrete periods of time. During the winter months (October to May), there are different rates for two discrete periods of time. **Figure 26** shows the estimated rates based on SCE billings. The highest rate occurs during the "On-Peak" hours of 12:00 PM and 6:00 PM. Not surprisingly, demand on the O-H Pipeline is high during these on-peak hours (see **Figure 27**). This may require the strategic operation of the proposed greensand filtration plant to avoid on-peak electrical rates. One strategy is to shut down the greensand filtration plant during on-peak hours. Another strategy is to reduce production from LAS wells during on-peak hours. It should be noted that start up and shut down operation of fines on the filter surface.

Figure 26 - Time of Use Charges, SCE, 2015

Well Nos. 12, 13 and 14 are currently only capable of operating at constant speed. The addition of Variable Frequency Drives (VFDs) would enable plant operations to trim production during on-peak TOU hours.

Since the existing motors are not inverter duty rated, the motors would need new windings to facilitate the VFDs. Both improvements are recommended and quotes were obtained for this TM.

Average Daily Demand on O-H Pipeline (2014 to 2015)

3.3.9 Sewer Considerations

Connection to an existing sewer along George Street was added to the El Rio facility in July 2010. The County of Ventura owns and operates the connected collection system which is conveyed approximately 7 miles away to the City of Oxnard's wastewater treatment plant located at 6001 South Perkins Road. The existing SDR 35 PVC sewer has a diameter of 8 inches with a slope of approximately 0.4%. From the point of connection, the pipe runs northeast in between the El Rio Operations Building and employee housing to a manhole over 200 feet away in distance (maintaining the same slope and diameter). From this point, the pipe diameter decreases to 6 inches and runs another 85 feet at a slope of 2.25%. In the absence of available hydraulic capacity information on the sewer collection system, the capacity can be determined based on the limiting 8 inch portion. The total hydraulic capacity if the pipe were at full depth is:

$$Q_{Full} = \left(\frac{1.49}{0.011}\right) \left(\pi \frac{8}{24}^2\right) \left(\frac{\pi \frac{8}{24}^2}{2\pi \frac{8}{24}}\right)^{2/3} \sqrt{0.004} = 0.91 \ CFS \ or \ 406 \ GPM$$

The City of Oxnard's design standards only permits peak flow rates when the pipe (10 inches or less) is flowing at one-half the depth. Therefore, the peak design capacity is:

$$\frac{d}{D} = 0.5 \quad \rightarrow \quad \frac{Q}{Q_{Full}} = 0.41 \quad \rightarrow \quad Q = 0.41 \times 0.91 = 0.37 \; CFS \; or \; 167 \; GPM$$

At first glance, the sewer does appear to have sufficient capacity for receiving backwash sludge. The entire backwash volume (without decanting) is anticipated to be approximately 30,000 gpd, or 21 gpm. The actual backwash volume with decanting is anticipated to much less. It is understood based on a recent conversation with the design engineer at Stantec Inc., that the pipe was oversized to accommodate grade

constraints. Since the existing load is from an operations building with a few offices and two residences, the added load is not anticipated to exceed peak design capacity.

It is not anticipated that the sludge generated from greensand filtration would be considered hazardous. Radon (a naturally occurring radionuclide in the Earth) has been detected in LAS well water, but at levels that are narrowly above detection limits. Recent sampling data indicates that arsenic is within the nondetectable range. The alternative to using the existing sewer connection is to periodically use trucks to haul sludge offsite for appropriate disposal. At 35 pounds per day of iron and manganese precipitates generated at 3% total solids concentration, this would equate into 140 gallons per day or approximately one 5,000 gallon tanker truck per month.

Pilot Plant testing did not confirm the hazard of sludge generated. The California Waste Extraction Test (CWET) can be used to determine the potential hazard. However, the CWET test might not be necessary as low levels of arsenic, radon, and radium (226 and 228) were encountered in the raw well water during pilot plant testing.

3.3.10 Cost Considerations

A conceptual level construction cost estimate was prepared based on USEPA cost curve data published in 1978. The cost data was multiplied by a projected RS Means 2016 cost index factor of 102/25.90, or 3.94. A location index factor was not applied due to uncertainty in the sourcing of materials. Design assumptions are based on **Appendix 7.4**.

All costs were updated based on a filter surface loading rate of 6 gpm/ft² that was observed during pilot plant testing.

Item	Est	imated Cost	Description
Capital Costs			
Fully Enclosed Building ⁽¹⁾	\$	448,000	Concrete block construction ⁽¹⁾
Manufactured Equipment	\$	678,000	Pressure filters
Plant Piping and Valves	\$	182,000	Filter valves and piping
Electrical and Instrumentation	\$	139,000	Control panel and instrumentation
Yard Piping and Valves	\$	336,000	Various pipes, fittings and valves
Well No. 12 Upgrades	\$	54,000	VFD and motor rewind
Well No. 13 Upgrades	\$	130,000	VFD, motor rewind, new stage
Well No. 14 Upgrades	\$	107,000	VFD and motor rewind
Labor (six months construction)	\$	375,000	
Subtotal	\$	2,449,000	
General Conditions @ 10%	\$	245,000	
Mobilization and Insurance @ 10%	\$	245,000	
Subtotal	\$	2,939,000	
Bonds @ 2%	\$	59,000	
Contractor Overhead and Profit @ 8%	\$	236,000	
Contingency @ 20%	\$	588,000	
Total	\$	3,822,000	
Operation and Maintenance Costs			
Process Energy	\$	496,000	per year (assumes 24/7/365)
Building Energy	\$	40,000	per year
Chemical	\$	30,000	per year
Maintenance Material	\$	28,000	per year
Total	\$	594,000	per year

Table 17 - Concentual Level Construction Cost Estimate for a Greensand Treatment Plant at El Rio Escility

Note: (1) The ideal scenario is to provide a temperature controlled environment for oxidation and filtration efficiency. However, this is not a requirement. Alternatives that would reduce costs include a building that would partially enclose filtration units or a canopy.

The construction costs shown in **Table 17** do not include design and construction administration costs. UWCD will solicit for proposals from engineering firms to obtain costs for design. Design costs for engineering projects are typically estimated at 8 to 15 percent of the construction cost (depending on complexity), or in this case, \$306k to \$573k. Construction administration may be implemented by UWCD staff or may be contracted separately. If contracted separately, construction administration is estimated to be 3 to 5 percent of the construction cost, or \$115k to \$191k.

\$80 million in potential grant funding is available through California's Proposition 1 Groundwater Sustainability Program (GSP). Project specific award amounts have not been announced and grant funding requires agencies to share 50% of the cost. UWCD submitted a pre-application to the SWRCB on January 8, 2016. The SWRCB will consider pre-applications in April or May of 2016. The first round grant solicitation for applications is anticipated in Fall 2016 to 2017 with award of grants anticipated in 2017.

The SWRCB has responded to the GSP pre-application with a letter dated July 20, 2016 (see Appendix 7.9). To summarize, the project was not considered further for GSP funding and better fits the criteria for the Drinking Water State Revolving Fund (DWSRF) program.

4. Conclusion

The primary drivers for iron and manganese treatment at the El Rio Facility are: (1) the increasing risk of exceeding the nitrate MCL during periods of water supply shortages, (2) concerns over the fouling of reverse osmosis systems due to the use of iron laden LAS groundwater and (3) compliance with secondary MCLs concerning taste, odor and color. The project objectives are to reduce if not eliminate the concern over increasing nitrate levels within UAS wells and to increase supply flexibility by addressing water quality concerns associated with the LAS wells.

UWCD issued a survey to all of its O-H Pipeline customers concerning options to address LAS well exceedance of secondary MCLs. The City of Oxnard responded by requesting treatment be implemented while others were either undecided or were willing to accept the water as is. The results of the survey prompted an investigation on the feasibility of constructing an iron and manganese treatment plant at the El Rio Facility.

After analyzing available water production and water quality data, it was determined that iron and manganese treatment of LAS wells is feasible at the El Rio Facility. Several scenarios were developed to identify the optimal size of such a facility and it was determined that the treatment of one LAS well is sufficient to achieve the project objectives. The existing configuration of the LAS wells would allow systematic cycling of the LAS wells (one at time) ensuring reliability and redundancy. A theoretical evaluation was performed on the additional LAS drawdown resulting from continuous operation of one LAS well. The result was a LAS static groundwater level decrease of approximately 30 feet over 10 years.

A variety of typical iron and manganese treatment methods were reviewed. As a result of the review, it is recommended to proceed with using the existing gaseous chlorine system for oxidation and construct a granular filtration system. Pilot testing has confirmed that MnO_2 sand and pyrolusite are suitable media for the removal of iron and manganese below detection limits. The filter loading rates were higher than expected (6 gpm/ft² and greater) and could be sustained for a minimum of 16 hours. However, concerns over high SDI values and the presence of fines in the filter effluent from pyrolusite media suggest that MnO_2 sand is a more suitable pre-treatment for downstream reverse osmosis systems.

Greensand filtration (MnO₂ sand) was used as the basis of analysis in this report because of its widespread use in municipal iron and manganese treatment. Several locations were analyzed for suitable siting. It is recommended that the area nestled between Clearwell No. 2 and the existing settling basin be selected for construction of a greensand filtration plant. The proposed greensand filtration plant would have a capacity of 3,500 gpm and include six (6) 12-ft diameter by 13-ft long pressure filter tanks that would be fully or partially enclosed in a 3,500 ft² building. Well Nos. 12, 13 and 14 would all require VFDs and motor rewinds. Additionally, Well No. 13 would require rehabilitation that may include additional column pipe and pump stages. The conceptual level construction cost estimate to construct such a facility is \$3.82 million while the operation and maintenance cost nears \$600,000 annually. These estimates should be considered conservative and may be further refined during detailed design. Additionally, capital costs could be reduced by selecting a partial building enclosure and operation and maintenance costs could be reduced by not operating the system during on-peak electrical hours. All of these factors should be taken into account in final design.

5. Recommendations (Next Steps)

Given the current state of increasing nitrate concentrations in UAS wells at the El Rio Facility and uncertainty regarding rainfall in 2016, it is recommended that iron and manganese treatment of LAS wells be pursued in order to ensure a reliable supply of water for O-H Pipeline users in the future that will continue to meet SWRCB DDW drinking water regulations.

The next step is to design and construct an iron and manganese treatment plant based on design criteria set forth in **Table 9**. Additional capacity could be added in the future as needed. Pilot plant testing suggests that LayneOx filter media would require 33% less surface area than Greensand Plus. However, there are concerns over higher SDI values observed in LayneOx filter effluent as compared to Greensand Plus. Higher SDI values pose a greater degree of fouling potential for RO systems which may cause problems for PHWA and others that might construct RO systems using O-H Pipeline water in the future. Therefore, Greensand Plus is recommended for the design of the iron and manganese treatment plant.

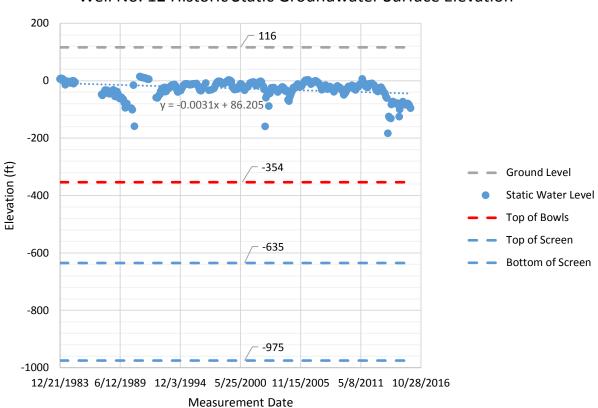
6. References

- 1. California Department of Water Resources. *Compilation of Technical Information Records for the Ventura County Cooperative Investigation, Volume II, Plate 8*. 1975.
- 2. Civardi, John, and Mark Tompeck. *Iron and Manganese Removal Handbook*. Second Edition. Denver. AWWA. 2015.
- 3. Cooper, H.H., and Jacob, C.E. A Generalized Graphic Method for Evaluating Formation Constants and Summarizing Well Field History, in Transactions of the American Geophysical Union, Volume 27, pp. 526-534. 1946.
- 4. Detmer, Daniel. *Nitrate Observations in the Oxnard Forebay and Vicinity, 1995-2006*. United Water Conservation District. Jul 2008.
- 5. EarthTech. *Well 29 Pilot Study Report*. Madison Water Utility. March 2007.
- 6. Geotechnical Consultants, Inc. Summary of Operations, Construction of Municipal Well No. 1, Seawater Intrusion Abatement Program Lower Aquifer Well System, Project No. 4070. 1983a.
- 7. Geotechnical Consultants, Inc. Summary of Operations, Construction of Municipal Well No. 2, Seawater Intrusion Abatement Program Lower Aquifer Well System, Project No. 4070. 1983b.
- 8. Geotechnical Consultants, Inc. Summary of Operations, Construction of Municipal Well No. 5, Seawater Intrusion Abatement Program Lower Aquifer Well System, Project No. 4070. 1983c.
- 9. Gordon, Erik J. Pilot Study Report for Iron and Manganese Removal by Hungerford & Terry GreensandPlus Adsortive Media Filtration. Feb 2010.
- 10. Groundwater Department. *Nitrate Study of El Rio Area Phase I Nitrates Through Time Areas of Occurrence*. United Water Conservation District. Jun 1998.
- 11. Groundwater Resources Department. *Groundwater and Surface Water Conditions Report 2013*. United Water Conservation District. May 2014.
- 12. Gumerman, Robert, Russel Culp and Sigurd Hansen. *Estimating Water Treatment Costs.* Municipal Environmental Research Laboratory, USEPA. August 1979.
- 13. James M. Montgomery, Consulting Engineers, Inc. *Water Treatment Principles and Design.* John Wiley and Sons, Inc. 1985.
- 14. HDR Engineering, Inc. Handbook of Public Water Systems. Wiley.
- 15. Lindeburg, Michael R. *Civil Engineering Reference Manual*. Eleventh Edition. Professional Publications, Inc. 2008.
- 16. Milner-Villa Consulting. *Urban Water Management Plan Update (2010)*. United Water Conservation District. Jun 2011.
- Rader, Larry. How to Operate and Maintain Manganese Greensand Treatment Units. National Drinking Water Clearinghouse. 2009.
 http://www.nesc.wvu.edu/pdf/dw/publications/ontap/2009_tb/how_to_manganese_greensa nd.pdf>.
- Seelig, Bruce, Russel Derickson, and Fred Bergsrud. *Treatment Systems for Household Water Supplies: Iron and Manganese Removal.* University of Minnesota. 2013.
 http://www.extension.umn.edu/environment/water/treatment-systems-for-household-water-supplies-iron-and-manganese-removal/.
- 19. Todd, D.K. Groundwater Hydrology, Second Edition, John Wiley & Sons, New York. 1980
- 20. Water Treatment Plant Design. Second Edition. McGraw-Hill. 1990.

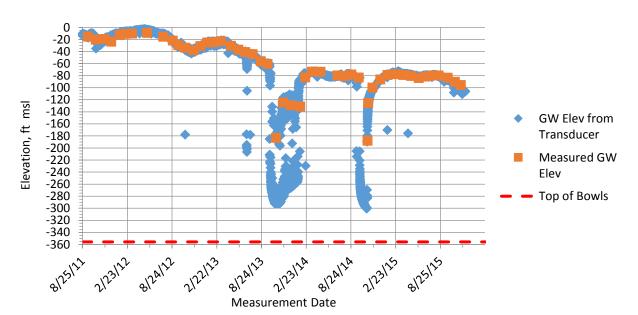
7. Appendices

- 7.1 Additional Water Quality Data for Well Nos. 12, 13 and 14
- 7.2 Historic Static and Pumping Water Levels at Well Nos. 12, 13 and 14
- 7.3 Lower Aquifer System Drawdown Impact Calculations
- 7.4 Proposed Greensand Filtration Plant with Chlorine Oxidation
- 7.5 Conceptual Plans Iron and Manganese Treatment Plant
- 7.6 Head Loss Calculations
- 7.7 Layne Christensen Pilot Study Report
- 7.8 Silt Density Index (SDI) Test Data
- 7.9 SWRCB Letter in Response to Proposition 1 Groundwater Grant Funding Pre-Application

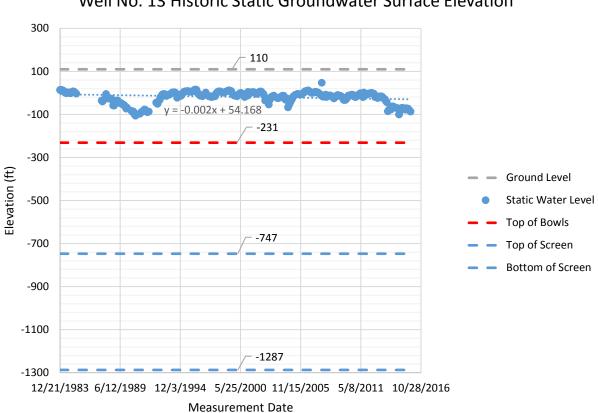
	Tabl	e 18 - Com	plete Water	Quality Da	ta for Well Nos. 12, 13 and 14			
Description	Unit				Sampling Date(s)	Practical Detection Limit	Primary MCL ¹	Secondary MCL ¹
General Mineral and Physica	al	12	15	14		Linit	MCL	INCL
Alkalinity, Total (as CaCO ₃)	mg/L	197	217	208	April 2003 to October 2015	10		
Bicarbonate (as HCO ₃)	mg/L	240	263	252	April 2003 to October 2015	10		
Calcium, Ca	mg/L	126	145	148	April 2003 to October 2015	1		
Chloride, Cl	mg/L	43.4	51.2	51.3	April 2003 to October 2015	1		250-500-600
Fluoride, F	mg/L	0.22	0.33	0.53	April 2003 to October 2015	0.1	2	
Hardness, Total (as CaCO ₃)	mg/L	467	518	554	April 2003 to October 2015	2.5		
Magnesium, Mg	mg/L	37.1	38.1	44.9	April 2003 to October 2015	1		
Nitrate, NO ₃	mg/L	2.8	1.9	5.1	April 2003 to October 2015	0.5	45	
pH, Field	Std. Unit	7.7	7.9	7.6	December 15, 2015			
pH, Lab	Std. Unit	7.7	7.7	7.6	April 2003 to October 2015			
Potassium, K	mg/L	4.04	4.62	4.79	April 2003 to October 2015	1		
Sodium, Na	mg/L	94	116	101	April 2003 to October 2015	1		
Specific Conductance	µmhos/cm²	1,232	1,381	1,384	April 2003 to October 2015	1		900-1600-220
Sulfate, SO₄	mg/L	415	472	487	April 2003 to October 2015	10		250-500-60
Temperature, Field	٩F	64.8	66.0	64.9	December 15, 2015			
Total Dissolved Solids, TDS	mg/L	966	1,093	1,090	April 2003 to October 2015	20		500-1000-150
Turbidity, Lab	NTU	1.9	4.7	2.3	April 2003 to October 2015	0.2		5
Regulated Inorganic								
Aluminum, Al	mg/L	0.39	0.1	ND	April 14, 2015	0.01	1	
Antimony, Sb	mg/L	ND	ND	ND	April 14, 2015	0.001	0.006	
Arsenic, As	mg/L	0.004	ND	ND	April 14, 2015	0.002	0.01	
Barium, Ba	mg/L	0.0309	0.0303	0.0202	April 14, 2015	0.0002	1	


APPENDIX 7.1 Additional Water Quality Data for Well Nos. 12, 13 and 14

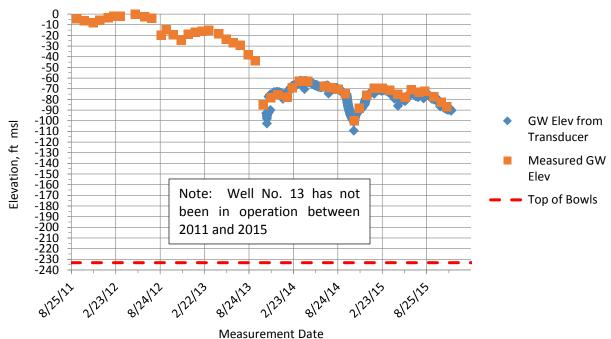
		<u> </u>		• • • •				
Description	Sampling Value or Average				Sompling Data(s)	Practical		
Description	Unit	12	Well No. 2 13 14		Sampling Date(s)	Detection Limit	Primary MCL ¹	Secondary MCL ¹
Beryllium, Be	mg/L	ND	ND	ND	April 14, 2015	0.001	0.004	
Cadmium, Cd	mg/L	ND	ND	ND	April 14, 2015	0.0002	0.005	
Chromium (Total Cr)	mg/L	ND	ND	ND	April 14, 2015	0.001	0.05	
Copper, Cu	mg/L	0.02	ND	ND	April 14, 2015	0.01		1
Cyanide, Total	mg/L	ND	ND	ND	April 14, 2015	0.004	0.15	
Iron, Fe	mg/L	0.43	1.08	0.41	April 2003 to October 2015	0.03		0.3
Lead, Pb	mg/L	0.0014	0.0005	ND	April 14, 2015	0.0005	0.015	
Manganese, Mn	mg/L	0.13	0.22	0.24	April 2003 to October 2015	0.01		0.05
Mercury, Hg	mg/L	ND	ND	0.00002	April 14, 2015	0.00002	0.002	
Nickel, Ni	mg/L	0.002	0.002	0.001	April 14, 2015	0.001	0.1	
Nitrate + Nitrite as N	mg/L	ND	ND	0.9	April 14, 2015	0.1	10	
Nitrite as N (Nitrogen)	mg/L	ND	ND	ND	April 14, 2015	0.2	1	
Perchlorate, ClO ₄₋	mg/L	ND	ND	ND	April 14, 2015	0.002	0.006	
Selenium, Se	mg/L	0.001	0.002	0.004	April 14, 2015	0.001	0.05	
Silver, Ag	mg/L	ND	ND	ND	April 14, 2015	0.001		0.1
Thallium, Tl	mg/L	ND	ND	ND	April 14, 2015	0.0002	0.002	
Zinc, Zn	mg/L	ND	ND	ND	April 14, 2015	0.02		5
Regulated Organics								
MTBE	mg/L	ND	ND	ND	April 14, 2015	0.001	0.005	
Inorganics								
Aggressiveness Index, Al	mg/L	11	11.1	11.2	April 14, 2015			
Ammonia Nitrogen	mg/L	ND	ND	ND	December 15, 2015	0.2		
Boron, B	mg/L	0.6	0.5	0.7	April 14, 2015	0.1		
Langelier Index at 20 ºC	mg/L	-0.9	-0.8	-0.7	April 14, 2015			
Silica, SiO₂	mg/L	26	31	34	December 15, 2015	1		

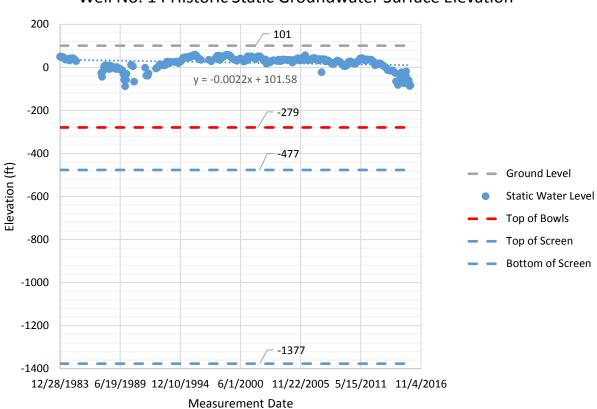

		Samplir	ng Value or A	Average		Practical		
Description	Unit		Well No.		Sampling Date(s)	Detection	Primary	Secondary
		12	13	14		Limit	MCL ¹	MCL ¹
Sulfide, Total	mg/L	ND	ND	ND	December 15, 2015	0.1		
Vanadium, V	mg/L				No Data			
Organics								
Total Organic Carbon, TOC	mg/L	0.9	1.0	ND	December 15, 2015	0.5		
Radiological								
Radium 226+228, Combined	pCi/L				No Data		5	
Radon 222 ± Counting Error	pCi/L	315±21.8	262±19.7	351±22.5	April 14, 2015	100		
Strontium-90, Sr	pCi/L				No Data		8	

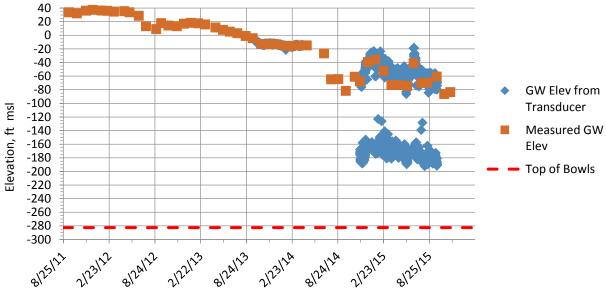
1. MCL = Maximum Contaminant Level as regulated by the U.S. Environmental Protection Agency and the California Division of Drinking Water


2. ND = Not Detected at or above the Practical Detection Limit

APPENDIX 7.2 Historic Static and Pumping Water Levels at Well Nos. 12, 13 and 14 Well No. 12 Historic Static Groundwater Surface Elevation




Well No. 12 Historic Pumping Groundwater Surface Elevation


Well No. 13 Historic Pumping Water Levels

APPENDIX 7.2 Historic Static and Pumping Water Levels at Well Nos. 12, 13 and 14 Well No. 14 Historic Static Groundwater Surface Elevation

Well No. 14 Historic Pumping Groundwater Level

APPENDIX 7.3 Lower Aquifer System Drawdown Impact Calculations

Parameter	Value	Units	Adjusted Value	Adjusted Units	Time (days)	Additional Drawdown At El Rio #12 (ft)	Additional Drawdown At El Rio #13 (ft)	Additional Drawdown At El Rio #14 (ft)	Additional Drawdown At Center of El Rio SG (ft)	Additional Drawdown At Del Norte Bl. and US 101 (ft)
Additional pumping at El Rio #12	1,167	gpm	224,584	ft^3/d	30.00	76.12	96.38	87.74	37.38	23.24
Additional pumping at El Rio #13	1,167	gpm	224,584	ft^3/d	365.25	91.66	114.02	104.87	51.76	37.62
Additional pumping at El Rio #14	1,167	gpm	224,584	ft^3/d	1,826.25	101.66	125.38	115.90	61.02	46.87
Avg. Hyd. Cond	133	ft/d	133	ft/d	3,652.50	105.97	130.27	120.65	65.00	50.86
Aquifer Thickness	70	feet	70	feet						
Storage coeff.	0.0001		0.0001							

Type input into yellow-highlighted cells--all other cells show results of calculations

	Drawdown Caused by El Rio #12					Drawdown Caused by El Rio #13						
Time (days)	Drawdown At El Rio #12 (ft)	Drawdown At El Rio #13 (ft)	Drawdown At El Rio #14 (ft)	Drawdown At Center of El Rio SG (ft)	Drawdown At Del Norte Bl. and US 101 (ft)	Time (days)	Drawdown At El Rio #12 (ft)	Drawdown At El Rio #13 (ft)	Drawdown At El Rio #14 (ft)	Drawdown At Center of El Rio SG (ft)	Drawdown At Del Norte Bl. and US 101 (ft)	
	1.17	2,270	6,660	4,000	11,400		2,270	1.17	4,430	1,900	10,800	
30.00	52.99	13.63	9.50	11.45	7.44	30.00	13.63	71.70	11.06	14.31	7.64	
365.25	58.95	18.42	14.29	16.25	12.23	365.25	18.42	79.75	15.85	19.10	12.44	
1,826.25	62.78	21.50	17.38	19.33	15.32	1,826.25	21.50	84.94	18.94	22.19	15.52	
3,652.50	64.43	22.83	18.71	20.66	16.64	3,652.50	22.83	87.17	20.27	23.52	16.85	

	Drawdown Caused by El Rio #14										
Time (days)	Drawdown At El Rio #12 (ft)	Drawdown At El Rio #13 (ft)	Drawdown At El Rio #14 (ft)	Drawdown At Center of El Rio SG (ft)	Drawdown At Del Norte Bl. and US 101 (ft)						
	6,660	4,430	1.17	3,830	9,450						
30.00	9.50	11.06	67.18	11.62	8.16						
365.25	14.29	15.85	74.73	16.41	12.95						
1,826.25	17.38	18.94	79.59	19.50	16.04						
3,652.50	18.71	20.27	81.68	20.83	17.36						

APPENDIX 7.4 Proposed Greensand Filtration Plant with Chlorine Oxidation

Parameter	Value	Unit	Description
Type of Operation	n/a	n/a	Catalytic oxidation using continuous regeneration (chlorine)
Filtration Media	n/a	n/a	Anthracite Manganese dioxide coated greensand (glauconite)
Depth of Anthracite	18	inches	
Headloss of Anthracite Media (normal)	0.1	ft/ft	Approximated based on BirmFilter.com literature
Headloss of Anthracite Media (backwash)	0.6	ft/ft	Approximated based on BirmFilter.com literature
Headloss of Anthracite Media (normal)	0.2	ft	Calculated
Headloss of Anthracite Media (backwash)	0.9	ft	Calculated
Depth of Greensand Media	24	inches	
Headloss of Greensand Media (normal)	1.0	ft/ft	Approximated based on Iversand Company GreensandPlus literature @ 3 gpm/sqft
Headloss of Greensand Media (backwash)	4.4	ft/ft	Approximated based on Iversand Company GreensandPlus literature @ 12 gpm/sqft
Headloss of Greensand Media (normal)	2.1	ft	Calculated
Headloss of Greensand Media (backwash)	8.8	ft	Calculated
Depth of Gravel	54	inches	
Filtration Capacity	1,000	grains/ft^2	As specified by Iversand Company GreensandPlus literature
Filtration Capacity	64,799	mg/ft^2	Converted
Design Flow Rate	3,500	gpm	one well, full time operation
Design Flow Rate	5.04	mgd	Converted
Design Flow Rate	5,646	ac-ft/yr	Converted
Design Fe Loading Rate (daily)	0.64	mg/L	from water quality statistical analysis 2003- 2015
Design Fe Loading Rate (daily)	2.42	mg/gal	Converted
Design Mn Loading Rate (daily)	0.2	mg/L	from water quality statistical analysis 2003- 2015
Design Mn Loading Rate (daily)	0.76	mg/gal	Converted
Design Fe Loading Rate (max)	3.8	mg/L	from water quality statistical analysis 2003- 2015
Design Fe Loading Rate (max)	14.38	mg/gal	Converted
Design Mn Loading Rate (max)	0.8	mg/L	from water quality statistical analysis 2003- 2015
Design Mn Loading Rate (max)	3.03	mg/gal	Converted
Average H2S concentration	0.00	mg/L	non-detect
Average NH3 concentration	0.00	mg/L	non-detect
Estimated Chlorine Demand (avg)	1.24	mg/L	formula from Iversand Company GreensandPlus literature (mg/L Cl ₂) = (1*mg/L Fe) + (3*mg/L Mn) + (6*mg/L H ₂ S) + (8*mg/L NH ₃)

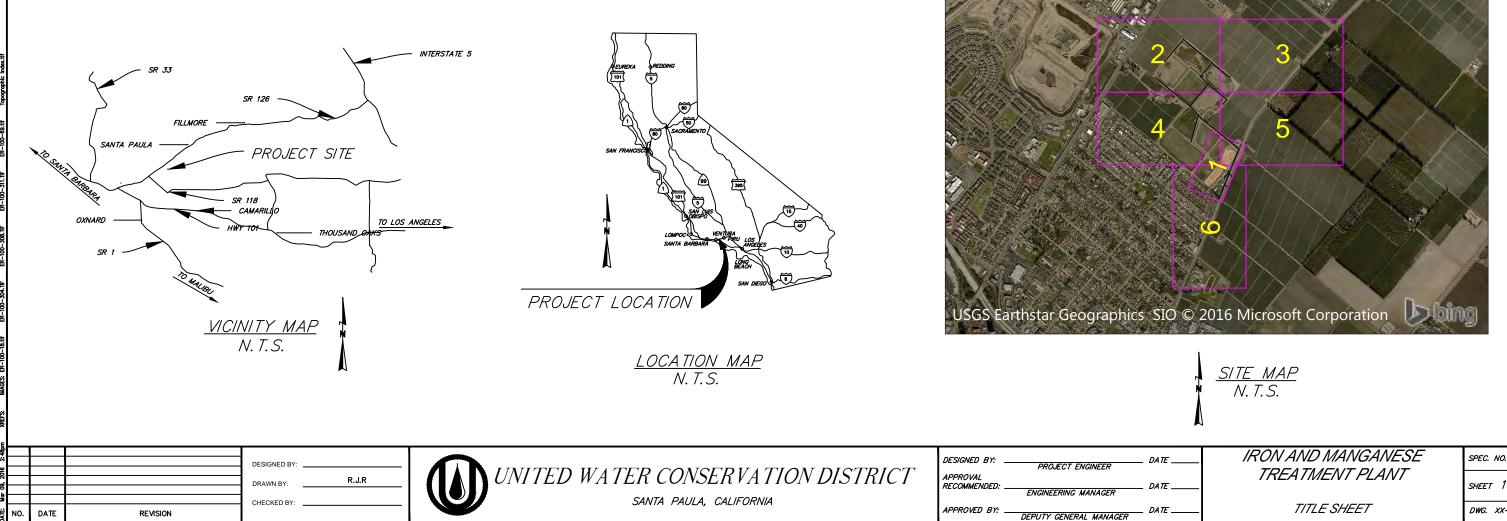

Parameter	Value	Unit	Description
Estimated Chlorine Demand (avg daily)	52.16	lb/day	Converted
Estimated Chlorine Demand (max)	6.2	mg/L	formula from Iversand Company GreensandPlus literature (mg/L Cl ₂) = (1*mg/L Fe) + (3*mg/L Mn) + (6*mg/L H ₂ S) + (8*mg/L NH ₃)
Estimated Chlorine Demand (max daily)	260.78	lb/day	Converted
Design Filter Surface Loading Rate	6	gpm/ft^2	2 to 12 gpm/ft^2 recommended by Iversand Company GreensandPlus literature
Total Filter Surface Area	583.3333333	ft^2	Calculated (gpm/ gpm/ft^2)
Number of Active Filters	4		4 total assumed (does not include recommended backwash and standby filters)
Surface Area per Filter	146	ft^2	Calculated (ft ² /# of filters)
Horizontal Cylindrical Tank Diameter	12	ft	Maximum transportable by truck (wide load)
Horizontal Cylindrical Tank Length	12.2	ft	Calculated
Vertical Cylindrical Tank Diameter	13.6	ft	Calculated
Vertical Cylindrical Tank Length			Depends on depth of media
Treated Mass per Filter (daily)	3.18	mg/gal	Does not include H2S, NH3, arsenic or radium (Fe + Mn)
Treated Mass per Filter (maximum)	17.41	mg/gal	Does not include H2S, NH3, arsenic or radium (Fe + Mn)
Treatment Mass Capacity per Filter	9,449,840	mg	Calculated (filtration capacity * surface area per filter)
Treatment Mass Capacity per Filter	9,450	g	Calculated (filtration capacity * surface area per filter)
Treatment Mass Capacity per Filter	9.45	kg	Calculated (filtration capacity * surface area per filter)
Treatment Volume per Filter (daily)	2,971,885	gal	Calculated (treatment mass capacity / treatment mass per filter)
Treatment Volume per Filter (max)	542,692	gal	Calculated (treatment mass capacity / treatment mass per filter)
Run Time Per Filter (daily)	3,396	min	Calculated [treatment volume per filter/(design flow rate/no. of filters)]
Run Time Per Filter (daily)	57	hr	Calculated [treatment volume per filter/(design flow rate/no. of filters)]
Run Time Per Filter (daily)	2.36	days	Calculated [treatment volume per filter/(design flow rate/no. of filters)]
Run Time Per Filter (max)	620	min	Calculated [treatment volume per filter/(design flow rate/no. of filters)]
Run Time Per Filter (max)	10	hr	Calculated [treatment volume per filter/(design flow rate/no. of filters)]
Run Time Per Filter (max)	0.43	days	Calculated [treatment volume per filter/(design flow rate/no. of filters)]
Backwash Rate Per Area	12	gpm/ft^2	As specified by Iversand Company GreensandPlus literature
Backwash Duration Per Filter	10	min	As specified by Iversand Company GreensandPlus literature
Total Backwash Volume per Run	70,000	gal	Calculated
Backwash Rate Per Filter	175	gpm	Calculated
Total Backwash Volume (daily)	29,678	gal/day	Calculated
Total Backwash Volume (daily)	207,747	gal/week	Calculated

Table 19 - Greensand Filtration Calculations							
Parameter	Value	Unit	Description				
Total Backwash Volume (daily)	10,802,842	gal/year	Calculated				
Total Backwash Volume (max)	162,523	gal/day	Calculated				
Total Backwash Volume (max)	1,137,662	gal/week	Calculated				
Total Backwash Volume (max)	59,158,422	gal/year	Calculated				
Total Mass of Sludge Generated (daily)	16.03	kg/day	Calculated				
Total Mass of Sludge Generated (daily)	35.33	lb/day	Calculated				
Total Mass of Sludge Generated (max)	87.76	kg/day	Calculated				
Total Mass of Sludge Generated (max)	193.48	lb/day	Calculated				

APPENDIX 7.5 Conceptual Plans – Iron and Manganese Treatment Plant

UNITED WATER CONSERVATION DISTRICT IRON AND MANGANESE TREATMENT PLANT (SPECIFICATION NO. XX - XX)

VENTURA COUNTY, CALIFORNIA

RON AND MANGANE
TREATMENT PLAN

SPEC. NO. XX—XX
sheet 1 of 7
DWG. XX-XXX-XXX

The Fr		All the second sec	POND 10	
		OS. 11, 12, 13, 14 RGE MANIFOLD	5 V V S	TURBIDITY MONITORING BLDG.
		POND 9		
				WELL NOS. 2A, 4, 5, 6 DISCHARGE MANIFO
A Ed				POND 8
			A A A A A A A A A A A A A A A A A A A	24" STORM DISCHARGE
ATE .	CLEARV WELL NO. 11	VELL NO. 1	PROP	OSED FILTER EFFLUI
		ASH EFFLUENT MANIFOLD		EARWELL NO. 2
				25' HORIZONTAL TAI SED 50' X 110' BUILDI
			PROPOSI	ED FILTER INFLUENT
0	-H PIPELINE WELL NO. 14 DISCHARGE		WELL NOS. 12 AN DISCHARGE MANIF	and the second sec
NO. DATE REVISION	DESIGNED BY:	NITED WATER CONSERVA' santa paula, californi	ne oommene	PROJECT ENGINEER DED: DATE ENGINEERING MANAGER DATE

FLUENT

TANKS JILDING

The state

77777777777777777
SPEC. NO. XX—XX
sheet 2 of 7
DWG. xxx-xxx-xxx

1"=100

200

DIME

				WELL NO. 6
				- WELL NO 7 (ABANDONED)
			WELL NO.	15
				WELL NO. 8
IO. DATE	REVISION	DESIGNED BY: DRAWN BY: CHECKED BY:	UNITED WATER CONSERVATION DISTRICT SANTA PAULA, CALIFORNIA	DESIGNED BY: PROJECT ENGINEER DATE APPROVAL RECOMMENDED: ENGINEERING MANAGER DATE APPROVED BY: DEPUTY GENERAL MANAGER DATE

NO. DATE

	LEGEND
A	AIR GAP
C	CHLORINE DIFFUSER
6	FLOW METER
M	MANHOLE
1	TURBIDITY INSTRUMENTATION
P	PUMP
W	WELL
- 😍	AUTOMATIC CONTROL VALVE
Ν	CHECK VALVE
2	ISOLATION VALVE

WELL NO. 5

GRAPHIC SCAL

PIPING LAYOUT - AREA 2

SPEC. NO. XX—XX
sheet 3 of 7
DWG. xxx-xxx-xxx

200

200

LEGEND

A	AIR GAP
0	CHLORINE DIFFUSER
Ø	FLOW METER
0	MANHOLE
Ø	TURBIDITY INSTRUMENTATION
P	PUMP
0	WELL
- 😍	AUTOMATIC CONTROL VALVE
	CHECK VALVE
1	ISOLATION VALVE

TREATMENT PLANT

PIPING LAYOUT - AREA 3

SPEC. NO. XX—XX
sheet 4 of 7
DWG. xxx-xxx-xxx

1"=200

400

a 12.39pm XRESs: RFM XRF 12-11-11. BF Ruday 3. 2.39pm XRESs: RFM XRF 12-11-11. BF Ruday MARSS: RFM XRF 12-10-11. BF FLOB-04. BF RFM XRF 12-10-11.	 ▲ AI ● C+ ● C+ ● FL ● M/ ● T ● PL ● V ● AI ▼ C+ 	ALORINE DIFFUSER OW METER ANHOLE JRBIDITY INSTRUMENTATION JMP	<image/>		
C C (19945 / 004	DATE	REVISION	DRAWN BY: R.J.R. CHECKED BY:	UNITED WATER CONSERVATION DISTRICT SANTA PAULA, CALIFORNIA	APPROVAL RECOMMENDED: ENGINEERING MANAGER DA APPROVED BY: DEPUTY GENERAL MANAGER DA

		• WELL NO	D. 16 WE	ELL NO. 13			
		WELL NO. (ABANDO	3 NED)				
/	/						
311.1F ER-100-68.tff Topographic Index.tff							
temp/verbildin.7178/2015-12-11_B Rouding USBR robert BTS V MARKES ER-100-16.111 ER-100-304.11F ER-100-306.11F ER-100-		CLEARWELL NO. 2					© 2016 N
DMG. C: \Users\robert\appdata\ocd\te DATE: War 08, 2016 2:41pm XREF Od International Activity	DATE	REVISION	DESIGNED BY: DRAWN BY: CHECKED BY:		WATER CONSERVA santa paula, califor	APPROVAL RECOMMENDED:ENGINE	EERING MANAGER DATE -

	PUMP ♥ VELL ♥ AUTOMATIC ♥ CHECK VALV	R ISTRUMENTATION CONTROL VALVE E
	ISOLATION V	ALVE
Mic	CRAPHIC SCALE	1"=200"
·	IRON AND MANGANESE TREATMENT PLANT PIPING LAYOUT - AREA 5	SPEC. NO. XX – XX SHEET 6 OF 7 DWG. XXX-XXX-XXX

e.tf		LEGEND AIR GAP CHLORINE DIFFUSER FLOW METER MANHOLE 1 URBIDITY INSTRUMENTATION PUMP WEIL AUTOMATIC CONTROL VALVE CHECK VALVE ISOLATION VALVE		WELL NO. 14				
v dopour vera veranty verantanty revious 12 * 1. 2. * Active 2. 44pm VREYS MARCS ER-100-18.tit ER-100-30.tit ER-100-30.tit ER-100-30.tit ER-100-31.1.tr ER-100-49.tit Topographic Inde	C 2 5	SRAPHIC SCALE	1"=200' 200 400				DESIGNED BY:	
DATE: Mar 09, 2016	D. DATE	REVISION	DRAWN BY: R.J.R.		VATER CONSERV santa paula, califo	A TION DISTRICT	APPROVAL RECOMMENDED:EN	PROJECT ENGINEER DATE IGINEERING MANAGER DATE UTY GENERAL MANAGER DATE

APPENDIX 7.6 – Headloss Calculations

Table 20 - Well No. 12, 13, 14 and Booster Pump Headloss Calculations

							Hazen					
		_	Approximate		Area		Friction		w (Velocity		d Loss
Line	From	То	Length	(in)	(ft^2)	Material	Factor	(gpm)	(cfs)	(ft/s)	(ft)	(ft/100ft)
1	Well No. 12 Feeding Proposed P											
1A	Well No. 12	"T" at Well No. 13	2,401	14	1.07	ACP	140	2,500	5.57	5.21	13.75	0.57
1B	"T" at Well No. 13	"T" at Pressure Filter Manifold	2,070	18	1.77	ACP	140	2,500	5.57	3.15	3.49	0.17
1C	"T" at Pressure Filter Manifold	Furthest Pressure Filter	145	18	1.77	Steel	100	2,500	5.57	3.15	0.45	0.31
1D		TOTAL	4,616							TOTAL	17.69	
2	Well No. 13 Feeding Proposed P	Pressure Filter										
2A	Well No. 13	"T" at Well No. 13	66	14	1.07	ACP	140	2,250	5.01	4.69	0.31	0.47
2B	"T" at Well No. 13	"T" at Pressure Filter Manifold	2,070	18	1.77	ACP	140	2,250	5.01	2.84	2.87	0.14
2C	"T" at Pressure Filter Manifold	Furthest Pressure Filter	145	18	1.77	Steel	100	2,250	5.01	2.84	0.37	0.26
2D		TOTAL	2,281							TOTAL	3.55	
3	Well Nos. 12 and 13 in Parallel F	eeding Proposed Pressure Filter										
3A	"T" at Well No. 13	"T" at Pressure Filter Manifold	2,070	18	1.77	ACP	140	4,750	10.58	5.99	11.43	0.55
3B	"T" at Pressure Filter Manifold	Furthest Pressure Filter	145	18	1.77	Steel	100	4,750	10.58	5.99	1.49	1.03
2E		TOTAL	2,215							TOTAL	12.92	
4	Well No. 14 Feeding Proposed P	Pressure Filter										
4A	Well No. 14	"T" at Well No. 11	2,162	12	0.79	ACP	140	3,500	7.80	9.93	48.88	2.26
4B	"T" at Well No. 11	"T" at Settling Basin	414	18	1.77	Steel	100	3,500	7.80	4.41	2.42	0.58
4C	"T" at Settling Basin	"T" at Pressure Filter Manifold	299	18	1.77	Steel	100	3,500	7.80	4.41	1.75	0.58
4D	"T" at Pressure Filter Manifold	Furthest Pressure Filter	145	18	1.77	Steel	100	3,500	7.80	4.41	0.85	0.58
		TOTAL	3,020							TOTAL	53.89	
	El Rio Booster Pumps Feeding Ba	ackwash Influent to Proposed Pressu	re Filter									
5A	Furthest Booster Pump	"T" at Discharge Manifold	21	16	1.40	Steel	100	7,930	17.67	12.65	1.00	4.71
5B	"T" at Discharge Manifold	"T" at Backwash Influent Pipe	91	30	4.91	Steel	100	31,720	70.67	14.40	2.60	2.87
5C	"T" at Backwash Influent Pipe	"T" at Backwash Influent Manifold	345	8	0.35	Steel	100	350	0.78	2.23	1.48	0.43
		TOTAL	457							TOTAL	5.08	

APPENDIX 7.6 – Headloss Calculations

					Tab	ole 21 - Filte	r Feed and E	Backwash A	nalysis							
	Construction Details			2014 SCE Test			Rated Capacity			Hydraulic Analysis						
	Base (Pad) Elev	Depth to Top of Bowl	Min Submergence	Min Water Elev	Standing Water Elev	Pumping Water Elev	Δ, Pumping - Min	Capacity	Total Head @ Capacity	HGL Elev @ Well	Pipeline Head Loss	HGL Elev @ Filter Influent	Filter Top Elev	Filter Head Loss	HGL Elev @ Filter Effluent	Margin of
Pump Name	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(gpm)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	Safety
O-H Pipeline Booster Pumps	103.6	16		87.6				6,700	109	196.6	5.1	191.5	118.0	9.9	181.6	54%
At 2014 groundwater levels																
Well No. 12	116.9	470	20	-333.1	-187.3	-283.6	49.5	2,500	468	184.4	17.7	166.7	118.0	2.3	164.4	39%
Well No. 13	109.7	341	20	-211.3	-100.0	-230.6	-19.3	2,500	360	129.4	3.6	125.8	118.0	2.3	123.5	5%
Well No. 14	100.7	380	20	-259.3	-61.1	-183.2	76.1	3,500	432	248.8	53.9	194.9	118.0	2.3	192.6	63%
At minimum pumping level																
Well No. 12	116.9	470	20	-333.1				2,500	468	134.9	17.7	117.2	118.0	2.3	114.9	-3%
Well No. 13	109.7	341	20	-211.3				2,500	360	148.7	3.6	145.1	118.0	2.3	142.8	21%
Well No. 14	100.7	380	20	-259.3				3,500	432	172.7	53.9	118.8	118.0	2.3	116.5	-1%

APPENDIX 7.7 – Layne Christensen Pilot Study Report

Pilot Study Report

LayneOxTM Iron & Manganese Removal Process

United Water Conservation District, Wells 12 and 13 Oxnard, CA May 16th – 20th, 2016

> LAYNE | water + mineral + energy 1138 N. Alma School Rd, Suite 207, Mesa, AL 85201 Office: 602-345-8600 | Fax: 602-345-8632

TABLE OF CONTENTS

Disclosure statement	.i
Figures	ii
Tables	iii
Glossary	.iv
Executive Summary	1
Introduction	3
Coagulation/Filtration	3
Treatment	3
Backwash	4
Media selection	4
Pilot Evaluation	5
Testing Objectives	5
Site Setup	5
Equipment Operation Description - Treatment	5
Equipment Operation Description - Backwash	6
Chemical Injection	6
Analytical Procedures	6
Pilot Test Results	7
Conclusions1	
Full Scale Design Summary1	7

APPENDICES

Appendix A: List of LayneOx TM installations in California	23
Appendix B: LayneOx TM specifications	25
Appendix C: Field Data	
Appendix D: Consolidated Lab Data	37

Disclosure Statement

This Pilot Plant Study Report has been prepared by Layne Christensen Company - Water Treatment Group (Layne) for the purpose of presenting Technology Verification Report on Layne's LayneOxTM Iron and Manganese reduction process to the United Water Conservation District.

Contents of this document are not to be used in any manner detrimental to Layne's interests and are not to be reproduced in whole or in part other than for the purpose intended. The Recipients will take all reasonable precautions and steps to ensure that the contents of this document are maintained in confidence. The results obtained from the pilot study are not to be published without the express written consent of Layne Christensen Company.

FIGURES

Figure 1.	Hach DR/890 colorimeter	6
Figure 2.	Hach pH Pocket Pro	6
Figure 3.	Trial 1 - Hydraulic Loading Rate versus Time in Hours, Well 13	.10
Figure 4.	Trial 2 - Hydraulic Loading Rate versus Time in Hours, Well 13	.11
Figure 5.	Trial 3 - Hydraulic Loading Rate versus Time in Hours, Well 13	.12
Figure 6.	Trial 4 - Hydraulic Loading Rate versus Time in Hours, Well 12	.13
Figure 7.	Greensand Plus Percentage of Totals in Backwash Over Time	.15
Figure 8.	Iron & Manganese in Backwash Waste as a Function of Time	16
Figure 9.	Iron and Manganese in Solution Over Time	17
Figure 10	Percentage of Solids Settled over Time	.17

TABLES

Table 1.	Summarized lab data for Greensand Plus	.8
Table 2.	Summarized lab data for LayneOx TM	.9
Table 3.	Greensand Plus sampling during backwash	14
Table 4.	LayneOx TM sampling during backwash	15
Table 5.	Settling rate of sludge from LayneOx TM column at <5 seconds chlorine mixing	17
Table 6.	Settling rate of sludge from Greensand Plus column at <35 seconds chlorine mixing	18
Table 7.	Greensand Plus pilot plant process parameters	.18
Table 8.	LayneOx TM pilot plant process parameters	.19
Table 9.	Proposed full scale equipment sizes and parameters for 3500 gpm system	21

Glossary

- CWET California Waste Extraction Test
- FGL Fruit Growers Laboratory
- Gpm/ft² gallons per minute per square foot
- MCL Maximum Contaminant Level
- Mg/L milligrams per liter
- NRC Nuclear Regulatory Commission
- OAL over-all length
- pCi-L picocuries per liter
- POTW Publicly Owned Treatment Works
- Psid pounds per square inch differential
- RCRA Resource Conservation and Recovery Act
- RO Reverse Osmosis
- SDI Silt Density Index
- SMCL Secondary Maximum Contaminant Level
- TCLP Toxicity Characteristic Leaching Procedure
- Ug/L micrograms per liter
- UWCD United Water Conservation District

Executive Summary

The purpose of the iron / manganese treatment pilot for UWCD was to demonstrate, on actual well waters, the efficacy of two different treatment medias, LayneOxTM and Greensand Plus. The goal is to quantify actual flowrates and thru-puts of the two medias so as to design the most cost effective treatment system. Both medias are NSF-61 approved for potable water treatment.

Layne conducted the pilot study for 5 days, from May 16^{nd} to the 20^{th} , 2016. Throughout the study the two medias, Greensand Plus and LayneOxTM, were piloted side-by-side. The Greensand Plus was operated at 6, 7, and 8-gpm/ft², and the LayneOxTM at 6, 8, 9, 10 and 12-gpm/ft². These loading rates were chosen to reflect normal operating rates and rates with one filter in backwash.

The pilot test equipment was set up at a discharge manifold for several wells, located at the El Rio Treatment Plant in Oxnard, California. Layne's testing protocol is described in the body of this report. The water at the outlet ran consistently throughout the 5 days of testing.

On the first four days of testing, water from Well 13 was directed through the discharge manifold. In the past, Well 13 was run only on a per need basis, and had been run infrequently. Pressure was maintained at 30 psig. During the pilot testing, a number of "Operation Critical" data points were identified for Well 13. Iron and manganese levels were found to be lower than what were previously thought and there appears to be an unusually high chlorine demand in the water. Client personnel stated that a camera had been sent down the well and irregularities were spotted. It was speculated that there may be potential biofouling in the well.

On May 18, the chlorination point was moved from immediately outside the pilot trailer to a point approximately 100 feet away, to assess the impact of additional oxidation time on manganese removal. This added approximately 30 seconds residence time to the influent.

For the next trial, Well 12 was directed through the discharge manifold and this well water was run thru the pilot trailer.

The Greensand Plus columns were able to maintain a 16 hr. run at 4 and 6-gpm/ft² with no signs of breakthrough, When the loading rate was increased to 8-gpm/ft², the columns were unable to sustain the loading rate for more than the first two hours. After the drop from the initial 8 gpm/ft², the column flow varied between 6 and 7-gpm/ft² and was able to sustain iron and manganese levels to below detection limits.

The LayneOxTM columns were able to maintain a 16 hr. run at 6, 8, and 9-gpm/ft²with no signs of breakthrough, removing iron and manganese to levels below the secondary MCL. At 10-gpm/ft² under blinding conditions, the column was able to maintain manganese below the secondary MCL for only 16 hours. At 12-gpm/ft² a run of only 9 hours was achievable; the column was able to maintain iron and manganese below secondary MCL but experienced a drop in flow rate.

Also during the trials at Well #13, a backwash test was run after each filter run, after which the next set of parameters was dialed into each column. The backwash cycle was done using influent from finished plant water. The backwash rate and duration for LayneOxTM was at 20-gpm/ft² for 5 minutes and 12-gpm/ft² for 20 minutes for Greensand Plus. The backwash rate for LayneOxTM is typically at 25-gpm/ft². However, at times the flow rate from the backwash source for this pilot was sustainable only to 20-gpm/ft². Under normal backwashing conditions of 25-gpm/ft² at five minutes, the backwashing procedure should be adequate. An insufficient flow rate will lead to premature breakthrough and shortened run lengths, giving the appearance of less-than-optimal performance. Iron oxide appears to be preferentially precipitated during the settling period, with approximately 72% of particulates settled over a four hour period.

The trials began in the afternoon, and terminated the following morning. During the pilot testing, numerous influent and effluent water samples were collected and sent to Fruit Growers Laboratory, Inc. located in Santa Paula, California, for analysis. The laboratory results for the influent water showed average iron levels of 500 μ g/L and manganese levels of 210 μ g/L for Well 13 and iron levels of 320 μ g/L and manganese levels of 145 ug/L for Well 12.

The lab results confirm that both LayneOx[™] and Greensand Plus media were able to maintain iron and manganese concentration levels below the detection limits for a period of 16 hours at both Well 12 and Well 13. The primary difference, as set forth in the pilot goals, was the difference in effective flow rate through the media. The Greensand Plus performed at up to 6gpm/ft², and the LayneOx[™] performed at up to 9-gpm/ft². Therefore the LayneOx can process up to 50% more flow per unit area of filter bed design based on the current water quality produced by Wells #12 and #13. Averaged chlorine consumption over the course of the pilot for greensand was 0.73-mg/L and 1.2 mg/L for LayneOx.

Introduction

Drinking water standards over the years have become increasingly stringent, as research has shown that health risks are associated with the presence of certain constituents in potable water. The presence of some constituents however do not necessarily pose a health risk, but still may be undesirable.

Iron and manganese do not have a Maximum Contaminant Limit (MCL) according to the EPA, but many municipalities have standardized on *secondary* MCLs (SMCLs) of 0.30 mg/L for iron and 0.050 mg/L for manganese. Iron and manganese can result in discolored water, stained plumbing fixtures, and unfavorable taste to the water, however, no known health risks are posed by high levels of iron and manganese. The SMCLs are set primarily for esthetic reasons. The goal in the pilot test was to achieve and maintain removal of iron and manganese below their respective SMCLs.

Oxidation/Filtration

There are numerous processes capable of iron and manganese removal. Some of the more complex processes include aeration, clarification-filtration and ozonation-microfiltration. The simplest process is direct filtration on a suitable media. Historically, direct filtration of iron and manganese was done using manganese greensand. Typically, potassium permanganate or chlorine in combination with potassium permanganate is used for an oxidant. Recently there has been a trend towards selecting medias that eliminate the need for permanganate which is more expensive to use than chlorine and which further has the attendant issues related to process control to avoid the "production of pink water". Greensand Plus in a mixed bed topped with a layer of Anthracite is one such media which may be charged with a chlorinating agent instead of permanganate.

LayneOxTM exhibits superior catalytic properties to manganese greensand and has the added benefit of enabling the use of chlorine as the primary and only pre-oxidant. These properties provide the potential to operate at high surface loading rates resulting in high removal efficiency and a small equipment footprint.

Treatment

LayneOxTM and Greensand Plus take advantage of the fact that iron and manganese are readily oxidized in the presence of already oxidized manganese in the media, in the form of manganese dioxide, MnO_2 . The manganese dioxide serves as a catalyst in the oxidation reduction reaction of iron and manganese.

LayneOxTM has very high manganese dioxide content, ranging from 75-80%, and is of a somewhat porous nature which allows more surface area interactions. In contrast, Greensand Plus is comprised of a manganese dioxide coating on a silica sand core. This is significant because the manganese dioxide on the surface of the media provides sites for the adsorption and oxidation of the iron from Fe (II) to Fe (III), manganese from Mn (III) to Mn (IV). It also serves

to accelerate the reaction rates. Additional surface area from a more porous particle allows for more interactions and deposition of ferric hydroxide and manganese dioxide.

Deposition of ferric hydroxide and manganese dioxide continue until the interstices between the media grains accumulate ferric hydroxide and manganese dioxide to capacity. This point is determined either by iron and/or manganese breaking through the filter bed or by high differential pressure across the bed. Backwashing is then required to abrade the excess iron and manganese oxides from the media grains, and carry these particles out of the bed to waste.

Backwash

As with any filtration media, LayneOx[™] and Greensand Plus require backwashing after a certain period of time. The purpose of a backwash is to remove the collected particulate waste from the media bed, which in turn prevents differential pressure build up and prepares it for another cycle. Effective backwashing is essential with these media or else the filter bed will "grow" with deposited iron and manganese oxides, and the length of running time between backwashes will decline.

In a full-size Layne treatment plant, the system takes one vessel off-line at a time to backwash. Raw water is treated in the other vessels, and then sent in reverse flow through the backwashed vessel. This process continues sequentially through all pressure vessels until all vessels are backwashed, and then the system resumes normal operation. This process is completely automated, allowing the system to run autonomously without manual interference.

Media Selection

Manganese oxide filter medias possess a strong negative electrostatic charge, or zeta potential that can be maintained by the addition of a single oxidant such as sodium hypochlorite. A chlorine residual of 0.5-1.0 ppm is usually sufficient to pre-oxidize iron and manganese for efficient removal by the media bed. Greensand Plus was marketed as capable of 2-12 gpm/ft², and LayneOxTM at loading rates of 5-15 gpm/ft², depending on the influent contaminant concentrations and the desired backwash frequency.

LayneOx[™] and Greensand Plus both have advantages over traditional media:

- Highly efficient removal of iron and manganese to well below the primary and secondary MCLs.
- Media is resistant to degradation because of high particle hardness.
- Potassium permanganate is not required, eliminating the "pink water" concerns.
- Single sodium hypochlorite pre-oxidant up stream of the water treatment system provides chlorine residual for the system.
- Automated system operation and minimal operator attention required.

In addition to the above points, LayneOxTM has the additional advantages:

- Proven process (over 100 plants have been installed using LayneOxTM media).
- Highly catalytic media allows high surface loading rates within a relatively small footprint when compared to other media, resulting in capital cost savings.
- No long reaction time is required for sodium hypochlorite.

More information about LayneOxTM can be found in the Product Bulletin and the NSF Certification in the appendices of this document.

Media selection is based on several factors including site footprint, loading rate, water chemistry and cost. Although this pilot study tested LayneOx TM media and Greensand Plus, Layne designs and builds treatment systems with a variety of filter media that are selected to best meet the customer's site-specific needs.

Pilot Test

Testing Objectives

The pilot system is a simplified version of a typical full-scale Layne coagulation/filtration treatment system. Pilot testing is used to develop and quantify the following objectives:

- Determining chlorine chemical dosing rate.
- Observe the effects of surface loading rate change on effluent water quality.
- Remove iron and manganese to levels at or below their respective SMCLs.

Site Setup

The pilot was set up at the UWCD treatment facility located in Oxnard, California. The source was a discharge manifold for several wells which could be isolated as needed. The influent water was drawn from a port directly off the manifold.

Equipment Operation Description - Treatment

Water is obtained via a ³/₄" hose connection providing feed water to the pilot unit. Untreated water flows into a static mixer, where a chemical injection port permits the chemical injection pump to provide metered amounts of sodium hypochlorite into the stream. The water is then sent through the filter vessels. Treated water is discharged to an on-site discharge location.

Rotameters and gate valves are used to meter and control the flow, respectively. PVC piping carries the water to a 60" high vertical column filled with a 36" bed of LayneOxTM media, or 12" 24" Greensand Plus media. The water flows into the top of the column, downward through the media bed and out through the bottom to the site's discharge point.

Equipment Operation Description - Backwash

Backwashing is accomplished by using the pilot's manual valves, sending the process flow in reverse through the filter columns. The process flow is directed into the piping connected to the bottom of the filter column, where it flows upward through the bed and out the top of the filter column. Backwashing is performed at a rate of 25-gpm/ft² for LayneOxTM, and 12-gpm/ft² for Greensand Plus. This flux lifts the media 40% above its settled bed depth to allow the accumulated particulate sufficient space to flow out of the bed. After leaving the filter column the backwash waste flows out through a hose to an approved discharge location. The backwash process is maintained for a five minute interval for LayneOxTM, and 20 minutes for Greensand Plus. The backwash process for Greensand Plus may be terminated if the waste stream becomes clear before 20 minutes.

Chemical Injection

Chemical injection is accomplished by utilizing a peristaltic pump capable of delivering 1-30 mL/min of metered flow. The chemical injection pump operates within a range that requires diluted chemical solutions. Household grade 7-8% sodium hypochlorite was diluted with raw water to make approximately a 0.7 % chlorine feed for the pilot.

Analytical Procedures

The Hach DR/890 Colorimeter was used for all field tests. Reagents are added to the sample, and the color change experienced indicates the amount of reactant in the sample. The instrument analyzes the color of the sample and returns a value in mg/L.

Figure 1. Hach DR/890 Colorimeter.

Figure 2. Hach pH Pocket Pro

Reagents/Test methods used:

- Ferrous Iron, Total (0 to 3.0 mg/L), 1, 10 Phenanthroline Method Hach Method 8146
- Manganese, Low Range (0.0-0.7 mg/L) Hach PAN Method 8149
- Chlorine, Free (0 to 2.00 mg/L), DPD Method Hach Method 8021 (USEPA Method 330.5)
- pH- Hach Plus pH Meter, handheld probe calibrated with 7.0 & 10 pH buffers

Pilot Test Results

Table 1 and 2 summarizes the results from samples submitted to FGL Inc. Laboratory located in Santa Paula, California. These tests show that the medias consistently removed iron and manganese levels to below secondary MCL levels while processing up to 9-gpm/ft² for LayneOxTM, and only 6-gpm/ft² for Greensand Plus during 16 hour trials without loss of flow rate. Full lab tests can be found in the appendices (ND=NonDetect, <30 ug/L for iron, and <10 ug/L for manganese). Table 5 and 6 provide a summary of the process parameters utilized during the pilot.

On May 18th, the chlorine injection point was moved approximately 100 feet upstream of the pilot at the request of the Client, thereby adding an additional approximate 30 seconds reaction time. The added reaction time caused drops in the loading rate for both the Greensand Plus and the LayneOxTM over the filter runs. It would suggest that the iron and manganese in the raw water were more completely oxidized before it reached the pilot, thus rendering the catalytic properties of the medias irrelevant. These types of design parameters are best suited for a mixed bed filter design with various layers of filter beds with increasing mesh sizes ran at low loading rate suggests that the medias were blinded on the surface of the bed, thereby shortening the time that the beds are functional. Under these non-ideal conditions, Greensand Plus and the LayneOxTM both performed equitably for both 6 and 8-gpm/ft².

Silt Density Index (SDI) testing was performed by UWCD personnel on both raw water well sources as well as each treatment media. Due to the very high pressure needed during these tests, full flow through the pilot trailer could not be achieved. In order for a media column to be tested, all flow to the other columns was stopped; this was necessary in order to achieve the required pressure for the SDI test equipment.

Typically, if the pilot was to be utilized for SDI testing, all media would have been flushed before service, and service would not be interrupted prior to testing. In addition, Layne would have provided test equipment and run the SDI testing; results could be verified by the client using separate equipment. SDI testing was not listed as a goal of the pilot, therefore, these additional steps were not incorporated into the pilot's protocols.

The procedure for the first three SDI tests was for the pressure to be increased from the water source well, and all flow was directed through the SDI test equipment. No water was supplied to the pilot trailer for approximately 15-20 minutes for the duration of the test.

The next step was to test the media. Since Greensand was in the first two columns, Greensand was tested first. Again, due to testing pressure requirements, the only flow to the pilot was through the Column being tested; this added another 20 minutes of non-operational time for the LayneOxTM columns. There was typically some 10 minutes between testing as equipment was moved, results were recorded and testing membranes were exchanged. This resulted in almost an hour of inactivity / flow to the LayneOxTM columns.

The first SDI test for LayneOxTM was performed using Column 4. Column 4 had its media replaced at the beginning of the pilot and the media had been only slightly seasoned. Column 4 proved unsatisfactory within a very short timeframe and the decision was made to use the seasoned media in Column 3. At this point, Column 3 had been sitting idle for more than 60 minutes. With no pre-flushing, although better than Column 4, results were less than desired.

The second and third SDI tests were conducted in a similar fashion; first the raw water source, then the Greensand then the LayneOx. Again, the Greensand results were satisfactory, the LayneOx, after sitting idle for almost an hour, were not.

On the fourth and final test, the testing steps were reversed; the LayneOx was tested first, then the Greensand and finally the raw water. In this sequence, the results were markedly improved, with both the LayneOx and Greensand having acceptable SDI readings.

It should be noted that the greensand passed the SDI tests, due to the fact that greensand packs more tightly than LayneOxTM. Thus it stands to reason that it will pass the SDI test more easily and not release particulates when the flow rate changes abruptly. However, this same packing density also creates a faster change of differential pressure across the bed during service.

LayneOxTM oxidation-filtration systems have been used for water treatment upstream of other treatment systems such as Reverse Osmosis. References are available in the Appendices.

Sample Date	Sample Description	Column	Loading Rate (gpm/ft ²)	Time Elapsed (hrs.)	Fe ug/L	Mn μg/L
5/16/16	Trial 1: Raw Water				470	210
5/16/16	Greensand	1	8	1	<30	<10
5/17/16	Greensand	1	6	21	<30	<10
5/16/16	Greensand	2	6	1	<30	10
5/17/16	Greensand	2	6	21	<30	<10
5/17/16	Trial 2: Raw Water				460	220
5/17/16	Greensand	1	8	1	<30	<10
5/18/16	Greensand	1	7	16	<30	<10
5/17/16	Greensand	2	6	1	<30	<10
5/18/16	Greensand	2	6	16	<30	<10
On 5/18/	16, the chlorine injection upstream, allowing for	-		-		further
5/18/16	Trial 3: Raw Water				490	200
5/18/16	Greensand	1	4	1	<30	<10
5/19/16	Greensand	1	3.8	18	<30	<10
5/18/16	Greensand	2	6	1	<30	<10
5/19/16	Greensand	2	5.7	18	<30	<10
						×10
5/19/16	Trial 4: Raw Water					<10
5/19/16	I lai 4. Kaw water				330	145
5/17/10	Greensand	1	8	1	330 <30	
5/20/16		1	8 6.5	1 16	<30 <30	145 <10 <10
	Greensand		-		<30	145 <10

Table 1. Summarized lab data for Greensand Plus.

Greensand Plus was able to remove iron and manganese to below detection levels at 6 and 8- gpm/ft^2 . For this particular water quality, at a constant 30 psig with the chlorine feed mixing time of less than 5 seconds, it was unable to maintain loading rates above 6 and 7- gpm/ft^2 for 16 hours, suggesting that pressure drop across the bed may become an issue at higher loading rates.

Sample Date	Sample Description	Column	Loading Rate (gpm/ft ²)	Time Elapsed (hrs.)	ΔP *	Fe ug/L	Mn μg/L
5/16/16	Trial 1: Raw Water					470	210
5/16/16	LayneOx TM	3	6	1		<30	<10
5/17/16	LayneOx TM	3	6	12		<30	<10
5/16/16	LayneOx TM	4	12	1		40	10
5/17/16	LayneOx TM	4	10	10		<30	<10
5/17/16	Trial 2: Raw Water					460	220
5/17/16	LayneOx TM	3	6	1		<30	<10
5/18/16	LayneOx TM	3	6	16		<30	<10
5/17/16	LayneOx TM	4	9	1	8.8	<30	<10
5/18/16	LayneOx TM	4	7.5	16		<30	<10
	8/16, the chlorine injec allowing		was moved ap tional 30 seco			t further	upstream,
5/18/16	Trial 3: Raw Water					490	200
5/18/16	LayneOx TM	3	6	1		<30	<10
5/19/16	LayneOx TM	3	5.6	18		<30	<10
5/18/16	LayneOx TM	4	8	1	9	<30	<10
5/19/16	LayneOx TM	4	6.5	18		30	10
5/19/16	Trial 4: Raw Water					330	145
5/19/16	LayneOx TM	3	6	1		<30	<10
5/20/16	LayneOx TM	3	5.7	16		<30	<10
5/19/16	LayneOx TM	4	10	1	7.5	<30	<10
5/20/16	LayneOx TM	4	7.3	16		100	90

Table 2. Summarized lab data for LayneOxTM

LayneOxTM was able to remove iron and manganese to at or below detection limit at 6, 8, and 9-gpm/ft² for a minimum of 16 hours.

For this particular water quality, at a constant 30 psig with the chlorine feed mixing time of approximately 35 seconds, it was unable to maintain 10-gpm/ft² for 16 hours, suggesting that pressure drop across the bed may become an issue.

*Estimated based on previous studies.

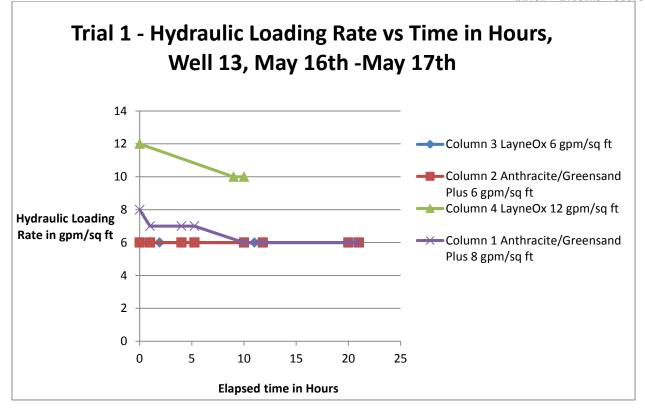


Figure 3. Trial 1 - Comparison of the hydraulic loading rates, Well 13, May 16th –May 17th. LayneOxTM columns were started later than the Greensand Plus columns, and resulted in shortened runs. At the beginning of the pilot, both Columns 3 and 4 contained previously used LayneOxTM. A decision was made to exchange the contents of Column 4 for virgin LayneOxTM. Both runs were terminated before 16 hours.

At 6 gpm/ft², LayneOxTM performed equitably with Greensand Plus for the length of its run. At 12 gpm/ft², LayneOxTM was unable to sustain the loading rate, but stabilized at 10-gpm/ft² at 10 hours. A 8-gpm/ft², Greensand Plus was unable to sustain the hydraulic rate for the initial 10 hours, but stabilized at 6-gpm/ft² for the remainder of the experiment.

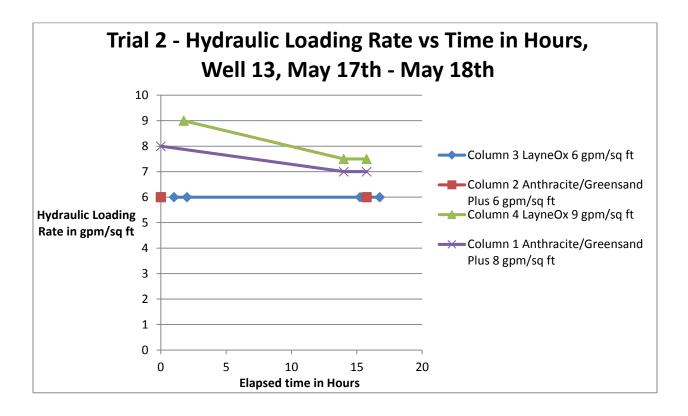


Figure 4. Trial 2 - Comparison of the hydraulic loading rates. At 6-gpm/ft², LayneOxTM performed the same Greensand Plus for the length of its run. At 9-gpm/ft², LayneOxTM was unable to sustain the loading rate, but stabilized at 7.5-gpm/ft². At 8-gpm/ft², Greensand Plus was unable to sustain the hydraulic rate for the initial 14 hours, but stabilized at 7-gpm/ft² for the remainder of the experiment.

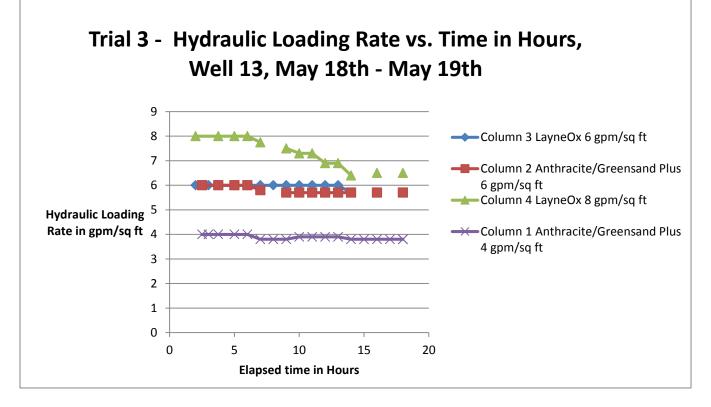


Figure 5. Trial 3 - Comparison of the hydraulic loading rates under blinding conditions. The chlorine injection point was moved 100 ft upstream, adding approximately 30 seconds reaction time. At 6-gpm/ft², LayneOxTM performed slightly better than Greensand Plus, with LayneOxTM able to sustain 6-gpm/ft² for an additional 7 hours. At 8-gpm/ft², LayneOxTM was unable to sustain the hydraulic rate for the initial 14 hours, but stabilized at 6.5-gpm/ft² for the remainder of the experiment.

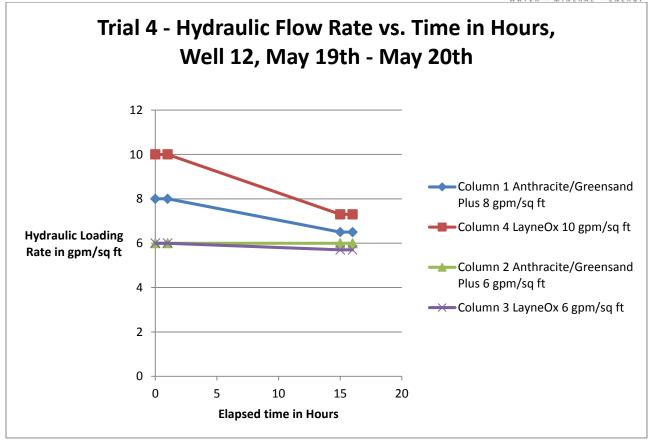


Figure 6. Trial 4 - Comparison of the hydraulic loading rates under blinding conditions. The chlorine injection point was moved 100 ft upstream, adding approximately 30 seconds reaction time. At 6-gpm/ft², Greensand Plus performed slightly better than LayneOxTM. At 8-gpm/ft², Greensand Plus was unable to sustain the loading ate and dropped down to 6.5-gpm/ft², but was able to maintain iron and manganese levels to below secondary MCL. At 10-gpm/ft², LayneOxTM was unable to sustain the loading ate and dropped down to 7.3-gpm/ft², and was inable to maintain manganese levels to below secondary MCL.

A water-saving measure of the Layne's coagulation-filtration system is the ability to recycle water which had been used in the backwash process. This technology is applicable to both LayneOxTM and greensand. If a proactive recycling system is desired, the backwash water is sent to a settling tank, where after a predetermined amount of settling time, the decanted liquid portion is sent back through the treatment system at 10% of the influent flow rate. The somewhat liquid sludge may be sent to a disposal mechanism, or may be further dewatered, with the water being sent back to the treatment system, and the compacted sludge to be disposed. The compacted sludge typically passes Toxicity Characteristic Leaching Procedure (TCLP), but further California Waste Extraction Test (CWET) testing may be required if the raw water contains regulated contaminants.

Backwashing was conducted at 20-gpm/ft² for 5 minutes for LayneOxTM, and at 12-gpm/ft² for Greensand Plus for 20 minutes. Depending on the manufacturer, the backwash cycle for greensand can range from 10 to 20 minutes. It should be noted that the backwash rate for LayneOxTM is up to 25-gpm/ft² to achieve 40% bed expansion. However, at times the flow rate from the backwash source for this pilot was sustainable only at 20-gpm/ft². Under normal backwashing conditions of 25-gpm/ft² at five minutes, the backwashing procedure should be adequate. An insufficient flow rate will result in residuals remaining on the media, thus leading to premature breakthrough and shortened run lengths, giving the appearance of less-than-optimal performance. Timed sampling was initiated for the backwashing of both medias.

Table 3. Greensand Plus backwash was sampled for 20 minutes, as a conservative measure based on manufacturers' literature. Analysis was done on the entire sample for totals. The backwash was taken after the chlorine injection point had been moved, thereby adding an additional 30 seconds of reaction time. It should be noted that there was sludge in the hoses that fed the water to the pilot, indicating some precipitating reaction had occurred. The ratio of iron to manganese in the backwash was 3.86 Iron : 1 Manganese. The influent ratio is approximately 2 Iron : 1 Manganese. The increase of iron in the iron/manganese ratio in the backwash suggests that manganese had precipitated and was not being flushed out of the media as easily as the iron. Only greensand backwash was sampled after moving the chlorination point. It is speculated that LayneOxTM and greensand sludges may behave in a similar fashion.

Greensand	0 min	2.5 min	5 min	7.5 min	10 min	12.5 min	15 min	17.5 min	20 min	Total
Fe (ug/L)	81,200	34,700	5,560	1,420	420	270	190	250	160	124,170
Mn (ug/L)	18,900	9,750	2,350	410	180	140	120	160	130	32,140
Settleable solids (mL/L)	105	36.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	142
Total solids (mg/L)	1,350	1,300	1,210	1,190	1,180	1,170	1,160	1,170	1,180	10,910
TSS (mg/L)	340	160	24	5	3	2	2	2	2	540

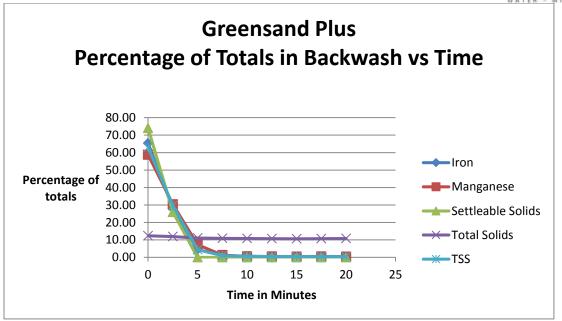


Figure 7. The percentage of the totals is plotted as a function of time. More than 97% of the residuals on the media were removed after 7.5 minutes backwash at 12-gpm/ft².

Table 4. LayneOxTM backwash was sampled for 5 minutes. The samples were analyzed for total (dissolved and particulate) iron and manganese. The backwash was taken before the chlorine injection point had been moved, with a mixing time of <5 seconds. The ratio of iron to manganese is similar to that of the influent at approximately 2:1, indicating that iron and manganese were not precipitating in the plumbing to any great extent.

LayneOx	0 min	2.5 min	5 min	Total
Fe (ug/L)	2170	44000	58500	104,670
Mn (ug/L)	5830	24400	16800	47,030
Settleable solids				
(mL/L)	0	18.9	36.8	56
Total solids				
(mg/L)	1200	1540	1340	4,080
TSS (mg/L)	42	410	319	771

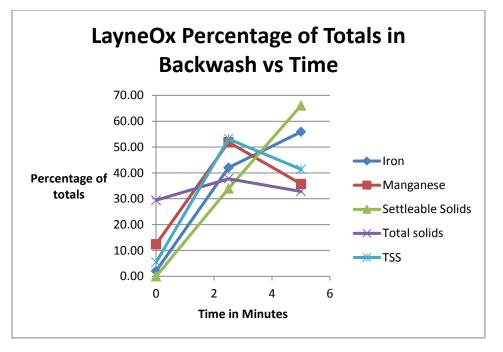


Figure 8. The percentage of the totals is plotted as a function of time. At 5 minutes backwash at 20-gpm/ft², it appears the media had not been adequately flushed because the bed was not expanded enough to allow for the contaminants and silt to be removed properly. Conditions at the pilot site allowed approximately 20-gpm/ft², but did not allow for backwashing at 25-gpm/ft². Under normal backwashing conditions of 25-gpm/ft² at five minutes, the backwashing procedure should be adequate. An insufficient flow rate will lead to premature breakthrough and shortened run lengths, giving the appearance of less-than-optimal performance. Layne recommends their maximum standard backwash rate of 25-gpm/ft² for 5 minutes for the Oxnard site. A proper backwash loading rate and bed expansion will also flush out LayneOx fines at start-up for new media allowing for acceptable SDI results exiting the filter system.

Due to the observation that fines were coming off the virgin LayneOxTM in Column 4, in combination with an inadequate flow rate for the backwash, the medias were periodically subjected to prolonged backwashes to compensate for inadequate bed expansion due to the decreased flow rate. Prolonged backwash at inadequate bed expansion did not and does not remove contaminants to the expected levels of a proper backwash and bed expansion.

Table 5. Settling rate of sludge from LayneOxTM column. This sludge was collected from the backwash process during the initial phase of the pilot, when the chlorine injection site was immediately outside the pilot trailer (mixing time <5 seconds). The sludge was placed in a container, and at selected times the liquid portion at the top was decanted and analyzed. The table illustrates the concentration of iron and manganese in the liquid portion of the sludge.

Time Elapsed (hrs)	Iron (mg/L)	Manganese (mg/L)	Total (mg/L)	% Removed	% Remain
0	18.00	9.06	27.06	0.0	100.0
3	2.74	4.83	7.57	72.0	28.0
5	1.95	3.63	5.58	79.4	20.6
7	1.40	2.92	4.32	84.0	16.0

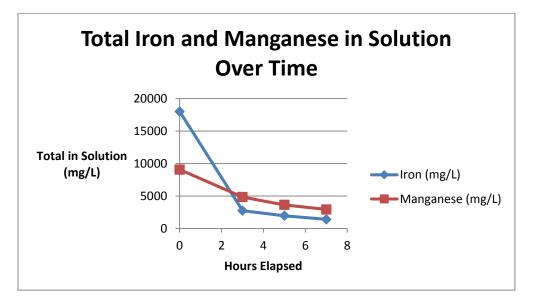


Figure 9. This figure illustrates the concentration of iron and manganese in the liquid portion of the sludge as a function of time.

In the settling tank, the majority of the sludge which precipitates over the first three hours of settling is composed of iron oxides.

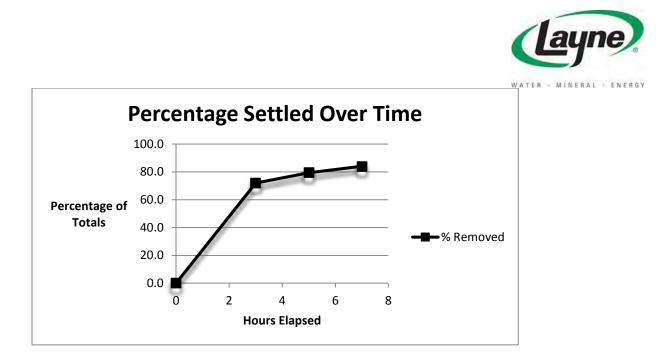


Figure 10. The bulk of the precipitates has settled by three hours, with approximately 28% still in solution. At five hours, approximately 20% is still in solution. If more expeditious settling is desired, the addition of a flocculant may aid in the process.

Table 6. Settling rate of sludge from Greensand Plus column. This sludge was collected from the backwash process during the second phase of the pilot, when the chlorine injection site was moved approximately 100 ft. from the trailer (mixing time <35 seconds). The samples were pulled from the top of the container to determine concentrations of iron and manganese which had not settled out of solution.

Time Elapsed (hrs)	Iron (mg/L)	Manganese (mg/L)	Total (mg/L)
0	13.797	3.571	17.368
4	2.030	0.460	2.490
20*	5.510	2.190	7.700
24	0.920	0.260	1.180

*Sample may have been slightly agitated prior to decanting sample.

In a comparison at 4 hours settling time (averaged 3 hrs and 5 hours results) for the LayneOx sample, the liquid portion of the sludge which was collected during the run with < 5 seconds chlorine mixing time had a ratio of 1 Iron:1.8 Manganese. The liquid of the sludge which was collected for the run with <35 seconds chlorine reaction time had a ratio of 4.41 Iron: 1 Manganese. The preponderance of iron in the decanted liquid in the second sample suggests that the manganese had either had bound to the media, or been

deposited in the plumbing between the injection point and the pilot. Either scenario leads to the conclusion that additional reaction time was beneficial to the oxidation and subsequent removal of manganese. However, it should be noted that with the addition of 30 seconds of reaction time, the columns appeared to suffer a blinding effect which lead to premature pressure issues.

Table 7. Greensand Plus pilot plant process parameters.

When the reaction time for the chlorine injection was less than 2 seconds, at 6-gpm/ft², Greensand Plus was able to maintain the initial process loading rate, but was unable to maintain the initial process loading rate of 8-gpm/ft². It was unable to maintain the initial process loading rates over 16 hours when the chlorine injection point was moved upstream for an additional 30 seconds reaction time.

Parameter	Starting Value*				
Process Loading Rate	$6-\text{gpm/ft}^2$ $8-\text{gpm/ft}^2$				
Flow Rate	1.18 gpm	1.57 gpm			
Media Bed Dimensions	24-inch greensand, 12-inch anthracite bed depth, 6-inch diameter				
Media Type	Anthracite, Greensand Plus				
Oxidant Chemical	Sodium Hypochlorite (NaOCl)				
Backwash Freeboard	16 inches				
Backwash Flow Rate	2.4 gpm (12 gpm/ft ²)				
Backwash Bed Expansion	12 - 14 inches for the a	nthracite			
Backwash Duration	20 minutes				
Backwash Source	Treated Water				
Backwash Destination	Approved Drainage Site				

Table 8. LayneOxTM pilot plant process parameters.

When the reaction time for the chlorine injection was less than 3 seconds, at 6 and 9-gpm/ft², LayneOxTM was able to maintain the initial process loading rate for 16 hours, and at 12-gpm/ft² for 9 hours. It was unable to maintain the initial process loading rates over 16 hours when the chlorine injection point was moved upstream for an additional 30 seconds mixing time.

Parameter	Starting Value*					
Process Loading Rate	6-gpm/ft ²	$6-gpm/ft^2$ $8-gpm/ft^2$ $9-gpm/ft^2$ $10-gpm/ft^2$ $12-gpm/ft^2$				
Flow Rate	1.18 gpm	1.57 gpm	1.78 gpm	1.98 gpm	2.36 gpm	
Media Bed Dimensions	36-inch bed d	epth, 6-inch di	ameter			
Media Type	LayneOx TM 2	0x40 mesh				
Oxidant Chemical	Sodium Hypo	chlorite (NaO	Cl)			
Backwash Freeboard	16 inches					
Backwash Flow Rate	3.95 gpm (20	gpm/ft ²)				
Backwash Bed Expansion	12 - 14 inches					
Backwash Duration	5 minutes					
Backwash Source	Treated Water					
Backwash Destination	Approved Dra	Approved Drainage Site				

Conclusions

Well 13's influent water contained an average of 500 ug/L iron and 210 ug/L manganese. Based on this particular water quality, Greensand Plus is capable of removing iron and manganese to below detection levels of 30 ug/L for iron, and 10 ug/L for manganese at a loading rate of 6-gpm/ft² for up to 21 hours, but was unable to maintain a higher loading rate. LayneOxTM was able to remove iron and manganese to the detection limit or lower, and was able to sustain the initial loading rates above 7-gpm/ft² for a minimum of 16 hours.

Given that the waters provided from UWCD to its Partners could be used as make-up water for additional treatment using reverse osmosis (RO) technologies, LayneOxTM's performance in similar installations did not raise any issues and, when tested per normal operating conditions, both the LayneOxTM and Greensand Plus did pass the SDI protocol. A list of installations using a LayneOx-RO system can be found in the Appendices.

Iron and manganese are not considered RCRA metals nor one of the parameters for TCLP and CWET testing, and discharge into the Publicly Owned Treatment Works (POTW) would be dependent on local permit regulations. Based on analyses conducted during the pilot, raw water from Well 13 has arsenic below laboratory detection limits of 2 ppb. The raw water from Well 12 has arsenic at a concentration of 3 ppb. Assuming a loading rate of 10-gpm/ft² for a 16 hour run, with a 5 minute backwash at 25-gpm/ft², the calculated arsenic content of the backwash for the worst case scenario would be 0.23 mg/L for the liquid sludge. If the sludge is de-watered to any extent, the arsenic concentration will be higher and will require further testing. The state of California stipulates the CWET level for arsenic be no higher than 5 mg/L. The mass balance for arsenic for the liquid sludge is below that of the CWET levels and therefore is subject to local permit regulations.

LayneOxTM in a coagulation/filtration system has been used to successfully remove radium from drinking water. Typically the backwash sludge has not posed a radioactivity disposal issue. EPA has published guidelines based on U.S. Nuclear Regulatory Commission (NRC) requirements that discharges with greater than 600 pCi/L of radium-226 and radium-228 and 3,000 pCi/L of uranium should not be discharged to the sewer. Based on analyses conducted during the pilot with a worst case scenario of radium-226 at 0.416 pCi/L and radium-228 at 0.105 pCi/L, using the same parameters as stated above, the mass balance of the total radioactivity in the liquid waste is expected to be approximately 40 pCi/L (below the 600 pCi/L threshold). Local regulations as well as requirements from the POTW which will handle the sewage discharge will be in effect. If the sludge is to be de-watered, further analyses will be needed as the waste becomes concentrated.

Full Scale Design

The desired additional capacity for UWCD was explained to be 3,500 gpm. Layne selected the LayneOxTM media and Greensand Plus media to demonstrate that a higher loading rate than 3-gpm/ft² is possible, thus saving UWCD significant capital expenses by requiring a smaller footprint and less equipment. Of the two medias, LayneOxTM was able to sustain higher loading rates over the duration of the pilot study at varying conditions and water quality.

Two potential vessel designs are recommended based on the pilot study results. The first design is for two horizontal, 2-cell vessel, 10' diameter by 24' over-all length (OAL), with full pressure barriers. The second option would be for a vertical 120" diameter x 60" straight side, six-vessel system comprised of two skids of three vessels each.

The proposed full scale equipment filter bed areas mirror the piloted loading rates to the closest available filter vessel size. The findings for the pilot demonstration confirmed that at the higher loading rate of 8-gpm/ft² and minimum 16 hours of filter run time, LayneOxTM was capable of reducing the manganese concentration level to less than 0.010 mg/L and the iron concentration to less than 0.030 mg/L. Actual run duration will depend on the water quality of the well.

LayneOxTM has been an industry standard for many years. Its life as a water treatment media can be upwards of 10 years. In facilities where sand is not removed from the water but pumped into the media, the media is subject to premature breakdown due to the abrasive action of the sand during the backwash cycle. If sand is suspected of being pumped into the treatment system, it is highly advised to install a particulate filter to remove the sand.

Table 9. Proposed Full Scale Equipment Sizes and Parameters for a 3500 gpm LayneOxTM system vs Greensand Plus.

Equipment Design	Layne Horizontal 10' D x 24' OAL	Layne Vertical 120" x 60" straight side	Greensand Horizontal 10' D x 30' OAL		
Number of vessels	2	6	2		
Number of cells per vessel	2	1	2		
Number of skids	N/A	2	N/A		
Total number of cells	4	N/A	4		
Pressure rating		75 psig ASME Code	e		
Vessel material]	PVQ carbon steel, SA-5	16-70		
Lining		NSF 61 certified Epor	ху		
Bed area per cell or vessel	109.5 ft ²	78.5 ft ²	150 ft ²		
System flow rate		3500 gpm			
Flow rate per cell or vessel	875 gpm	583 gpm	875 gpm		
Total bed area	438 ft^2	471 ft ²	600 ft^2		
Loading rate	7.99-gpm/ft ²	7.43-gpm/ft ²	5.83-gpm/ft ²		
Differential pressure across bed (clean)	3-4 psig				
Differential pressure across bed (terminal)		10 psig			
Total System Design head loss (max).		15 psig			
System backpressure		Atmospheric			
System Design Pressure		75 psig			
Media	LayneO	Greensand/Anthracite			
Media depth		66 in.	24"/12"		
Media bed volume per cell/filter	328.5 ft ³	235 ft ³	450 ft ³		
Total media volume	1,314 ft ³	1413 ft ³	1800 ft ³		
Total media weight, shipping	157,680 lb.	169,560 lb.	153,000 lb.		
Total gravel underbed	660 ft ³	471 ft ³	600 ft ³		
Backwash loading rate- max	25-gpm/ft ² at 90 deg. F	25-gpm/ft ² at 90 deg. F	12-gpm/ft ²		
Backwash rate (per filter)	3,000-gpm	1,962-gpm	1,800-gpm		
Backwash duration	5 minutes	5 minutes	10 minutes		

			WATER + MINERAL + ENERG		
Backwash volume, gal.	15,000 gal per	12,263 gal per filter	27,000 gal per cell		
	cell				
Total backwash volume	60,000 gal plus	73,578 gal plus 7,000	108,000 gal plus 7,000		
per sequence	7,000 (fast rinse)	(fast rinse)	(fast rinse)		

Estimated Preliminary Rough Order of Magnitude Capital Expenditures Comparison:

Equipment Design	Layne Horizontal 10' D	Layne Vertical 120" x	Greensand Horizontal
	x 24' OAL	60" straight side	10' D x 30' OAL
	\$875,200	\$1,100,000	\$1,010,500

Estimated Operational Expenditures for LayneOxTM system:

Equipment Design	Units	Consumption per day, maximum flow at 24 hrs. (5,040 kgal per day)	Consumption per year (maximum flow 24 hrs/day)	
Chlorine gas consumption*	5.374 g (0.0118 lb) Cl ₂ per kgal treated	27.1 kg, or 59.7 lbs	21,791 lbs	
Electrical costs, Control Unit	\$0.12 per kw∙hr	\$5.52	\$2014.80	

*Consumption may fluctuate depending on water quality and frequency of backwashes.

APPENDIX A

Layne has installed successful LayneOxTM systems all over the country for iron, manganese, arsenic, and radium removal. Some of the larger systems are:

Location:	GPM
City of Adelanto, CA	8,100
City of Plano, IL	1,000
Southern California Water Co., Roseton, CA	1,000
Arizona Water Company, Oasis, AZ	2,500
Arizona Water Company, Baseline, AZ	4,500
Arizona Water Company, Cottonwood, AZ	5,800
Arizona Water Company San Manuel, AZ	1,500
Arizona Water Company, Superior, AZ	1,600
Community Water Company, AZ, 4 wells	1,000 - 2,500
Arizona Water Company, 4 wells	2,300
Arizona Water Company, Casa Grande, AZ	1,350
Surprise, AZ	6,000
City of Minneapolis, KS, 3 wells	1,050
City of Ellis, KS, 8 wells	1,050
Newport, VT	1,200
Sonoran Vista	3,500
West Valley Water District, Riato, CA	2,000
Weatherford, OK, 2 wells	1,4000 2,000
Mason, MI	1,736
City of Rockford, IL, 10 wells	1,200-2,100
Vancouver, WA	3,900
Rural Water System #1, Sious Center, IA	3,420
City of Alliance, NE	1,800
Maywood Mutual Water Co., Maywood, CA	1,100
Sparta, MI	1,000
Rural Water Systems #1, Hospers, IA	2,900
Newburg, NY	2,220
Sunland Park, NM	1,406
Chandler, IN	4,000
Searles Valley Minerals, Trona, CA	300-1000
City of Love's Park, IL	1,600
Benkelman, NE, 2 wells	1,000
City of Merrill, WI	1,800
Twin Cities WTP, Twin City, OH	1,560
City of Fulton, IL	1,200
	1,200

A partial list of the larger installations completed in California alone:

Maywood Mutual Water Company, Maywood, CA	1100 gpm
West Valley Water District, Riato, CA	2000 gpm
Southern California Water Company, Roseta, CA	1000 gpm
City of Adelanto, CA	8100 gpm

LayneOxTM / Reverse Osmosis systems:

St. Brides Water Treatment Plant, Richmond, VA	610 gpm
Children's Hospital of New Orleans, LA	135 gpm
Doubletree Paper Mills, Gila Bend, AZ	310 gpm

APPENDIX B

LAYNEOXTM PRODUCT SPECIFICATION

Trade name	LayneOx TM
Color	Black
Form	Particulate
Bound Moisture Content	2% MAX as shipped
Bulk Density-Loose Packed	110-115 pounds/cu foot
Hardness- Ball Pan	80 Minimum
Abrasion Number	70 Minimum
Manganese Dioxide	70-80% Average throughout media matrix
Mean Particle Diameter	0.4-0.6MM
Effective Size	0.3-0.5MM
Uniformity Coefficient	Less than 1.65
Particle Size Range	20x40 mesh
ANSI/NSF 61	Certified without limitations for use in potable water
Preconditioning	Washed and Screened to size
Percent finer than 40 mesh	5% max
Percent coarser than 20 mesh	n 5% max
Packaging	Super sacks or 55 pound bags

APPENDIX C

Field Data:

The first trial (Trial 1) of the LayneOx columns was not able to be started until much later in the day due to unforeseen circumstances.

The Hach method for free chlorine has a detection limit of 0.02 mg/L with a variance of 0.01 mg/L. The Hach method for ferrous iron analysis has a detection limit of 0.03 mg/L with a variance of 0.013 mg/L. The Hach method for manganese analysis has a detection limit of 0.02 mg/L with a variance of 0.013 mg/L. The field analyses data for manganese showed fluctuations and values above what was expected. Further examination indicated that mineral interferences were present in the water which exaggerated the true values. A chemical reagent to ameliorate the interferences was purchased and used on May 19th and 20th. Results from the certified laboratory should be considered the more accurate of the analyses.

Trial 1

		n 1, variabl								T	
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/16/16	1006	0	8	0			1.2	0.21			Well 13
5/16/16	1106	1	7	420	<0.03	0.033	1.1	0.32	7.57	20.9	
5/16/16	1406	4	7	1680	0.03	0.052	0.68	0.61	7.39	21.9	
5/16/16	1615	5.25	7	2205	<0.03	0.037	0.60	0.21	7.38	21.9	
5/16/16	2000	10	6	4125	0.03	0.038	2.94	0.66	7.43	19.4	Increased hypochlorite dosing
5/16/16	2152	11.8	6	4773	< 0.03	0.055	2.32	0.54	7.53	18.3	
5/17/16	0655	20	6	7725	<0.03	0.053	2.14	1.13	7.54	18.5	
5/17/16	0800	21	6	8085							Lab sampling

Column 4, variable gpm/ft ² LayneOx™											
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	/ Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/16/16	2152	0	12	0	0.04	0.117	2.32	0.90	7.19	19.1	Well 13
5/17/16	0655	9	10	5940	0.03	0.055	2.14	2.03	7.54	19.2	
5/17/16	0800	10	10	6540							Lab sampling

Trial 1

	Colui G	mn 2 6 و ireensand I	gpm/ft² Plus								
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/16/16	1006	0	6	0			1.2	0.21			Well 13
5/16/16	1106	1	6	360	0.06	0.029	1.1	0.30	7.47	20.9	
5/16/16	1406	4	6	1440	<0.03	0.049	0.68	0.57	7.44	21.8	
5/16/16	1615	5.25	6	1890	<0.03	0.037	0.60	0.22	7.37	21.6	
5/16/16	2000	10	6	3600	0.06	0.029	2.94	0.80	7.44	19.4	Increased hypochlorite dosing
5/16/16	2152	11.8	6	4248	0.04	0.074	2.32	1.31	7.49	18.9	
5/17/16	0655	20	6	7200	0.09	0.056	2.14	1.24	7.56	18.9	
5/17/16	0800	21	6	7560							Lab sampling

Column 3 6 gpm/ft ² LayneOx [™]											
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/16/16	2000	0	6	0	0.05	0.041	2.94	0.45	7.38	19.5	Well 13
5/16/16	2152	1.9	6	684	0.04	0.074	2.32	0.54	7.42	19.2	
5/17/16	0655	11	6	3960	0.26	0.052	2.14	0.55	7.45	19.2	

							WATER +	MINEBAL	NERGY
5/17/16	0800	12	6	4320					Lab sampling

		nn 1, varial Treensand F									
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/17/16	1705	0	8	6300	< 0.03	0.135	1.80	0.95	7.43	21.3	Well 13
5/18/16	0715	14	7	7035	<0.03	0.069	1.38	0.49			
5/18/16	0842	15.75	7	6300							Lab sampling

,	Variable	Column 4 e gpm/ft ² L									
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft.²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/17/16	1600	1.75	9	945	<0.03	0.034	1.80	0.48	7.37	21.0	Well 13
5/18/16	0715	14	7.5	6930*	<0.03	0.039	1.38	0.44			
5/18/16	0842	15.75	7.5	7088							Lab sampling

		umn 2, 6 gp reensand F									
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/17/16	1705	0	6	0	<0.03	0.036	1.80	0.92	7.38	21.1	Well 13
5/18/16	0715	14.25	6	5040	<0.03	0.035	1.38	0.78			
5/18/16	0842	15.75	6	5670							Lab sampling

	6 gp	Column 3 m/ft ² Layr	-								
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/17/16	1243						1.85				
5/17/16	1600	1	6	360	<0.03	0.036		0.29	7.37	21.0	
5/17/16	1626						1.80				
5/17/16	1705	2	6	720	<0.03	0.135	1.80	0.95	7.43	21.3	Well 13
5/18/16	0715	15.25	6	5490	<0.03	0.069	1.38	0.49			
5/18/16	0842	16.75	6	6030							Lab sampling

		nn 1, varia Freensand							
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	Notes
5/18/16	1529	2.5	8 to 6.5, to 4	982	<0.03	0.056	1.38		Well 13; moved hypochlorite injection point to 100 ft upstream, increased hypochlorite concentration
5/18/16	1605	3	4	1072	<0.03	0.041			
5/18/16	1645	3.75	4	1252	0.03	0.066	1.62	0.86	
5/18/16	1800	5	4	1552		0.066			
5/18/16	1900	6	4	1792		0.062			
5/18/16	2000	7	3.8	2020		0.057			
5/18/16	2100	8		2248		0.062			
5/18/16	2200	9	3.8	2476		0.051			
5/18/16	2300	10	3.9	2710		0.052			
5/19/16	0000	11	3.9	2944		0.048			
5/19/16	0100	12	3.9	3178		0.057			
5/19/16	0200	13	3.9	3412		0.053			
5/19/16	0300	14	3.8	3640		0.059			
5/19/16	0400	15		3868		0.042			
5/19/16	0500	16	3.8	4096		0.046			
5/19/16	0600	17		4324		0.050			
5/19/16	0700	18	3.8	4552		0.047			
5/19/16	0704	18		4552					Lab sampling

		Column 4	1						
,	Variable	e gpm/ft² L	.ayneOx™						
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	Notes
5/18/16	1500	2	8	960	<0.03	0.045	1.38		Well 13; moved hypochlorite injection point to 100 ft upstream, increased hypochlorite concentration
5/18/16	1645	3.75	8	1800	< 0.03	0.049	1.62	0.62	
5/18/16	1800	5	8	2400		0.042			
5/18/16	1900	6	8	2880		0.045			
5/18/16	2000	7	7.75	3345		0.045			
5/18/16	2100	8		3810		0.043			
5/18/16	2200	9	7.5	4260		0.034			
5/18/16	2300	10	7.3	4698		0.046			
5/19/16	0000	11	7.3	5136		0.048			
5/19/16	0100	12	6.9	5550		0.044			
5/19/16	0200	13	6.9	5964		0.052			
5/19/16	0300	14	6.4	6348		0.034			
5/19/16	0400	15		6732		0.042			
5/19/16	0500	16	6.5	7122		0.044			
5/19/16	0600	17		7512		0.038			
5/19/16	0700	18	6.5	7902		0.050			
5/19/16	0704	18		7902					Lab sampling

-

		umn 2, 6 gp ireensand F							
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	Notes
5/18/16	1529	2.5	6	900	<0.03	0.043	1.38		Well 13; moved hypochlorite injection point to 100 ft upstream, increased hypochlorite concentration
5/18/16	1645	3.75	6	1350	< 0.03	0.044	1.62	0.90	
5/18/16	1800	5	6	1800	< 0.03	0.0.042			
5/18/16	1900	6	6	2160		0.039			
5/18/16	2000	7	5.8	2508		0.046			
5/18/16	2100	8		2856		0.039			
5/18/16	2200	9	5.7	3195		0.034			
5/18/16	2300	10	5.7	3450		0.057			
5/19/16	0000	11	5.7	3882		0.053			
5/19/16	0100	12	5.7	4224		0.067			
5/19/16	0200	13	5.7	4566		0.056			
5/19/16	0300	14	5.7	4908		0.051			
5/19/16	0400	15		5250		0.036			
5/19/16	0500	16	5.7	5592		0.050			
5/19/16	0600	17		5934		0.072			
5/19/16	0700	18	5.7	6276		0.055			
5/19/16	0704	18		6276					Lab sampling

	6 gp	Column 3 m/ft ² Layn							
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	Notes
5/18/16	1500	2	6	720	<0.03	0.045	1.38		Well 13; moved hypochlorite injection point to 100 ft upstream, increased hypochlorite concentration
5/18/16	1605	3	6	1080	< 0.03	0.041			
5/18/16	1645	3.75	6	1350	<0.03	0.043	1.62	0.48	
5/18/16	1800	5	6	1880		0.039			
5/18/16	1900	6	6	2160		0.033			
5/18/16	2000	7	6	2520		0.034			
5/18/16	2100	8	6	2880		0.041			
5/18/16	2200	9	6	3240		0.037			
5/18/16	2300	10	6	3600		0.046			
5/19/16	0000	11	6	3960		0.041			
5/19/16	0100	12	6	4320		0.039			
5/19/16	0200	13	6	4680		0.049			
5/19/16	0300	14	5.7	5022		0.038			
5/19/16	0400	15		5364		0.040			
5/19/16	0500	16	5.7	5706		0.037			
5/19/16	0600	17		6048		0.042			
5/19/16	0700	18	5.7	6390		0.047			
5/19/16	0704	18		6390					Lab sampling

		umn 1, variab Greensand Pl									
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/19/16	1558	0	8	0	<0.03	0.027	3.78	3.3	7.71	21.7	Water source moved to Well 12, new hypochlorite solution
5/19/16	1700	1	8	480			2.28	1.80			
5/20/16	0701	15	6.5	6962	< 0.03	0.044	1.12	0.93	7.60	20.3	
5/20/16	0800	16	6.5	7352							Lab sampling

	Variabl	Column 4 e gpm/ft ² La	ayneOx™								
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flow (Gal.)	Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/19/16	1558	0	10	0	<0.03	0.024	3.78	2.13	7.51	21.4	Water source moved to Well 12, new hypochlorite solution
5/19/16	1700	1	10	600			2.28	0.78			
5/20/16	0701	15	7		<0.03	0.028	1.12	0.42	7.60	19.7	
5/20/16	0800	16	7								Lab sampling

		umn 2, 6 gp Freensand F									
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flo (Gal.)	w Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/19/16	1558	0	6	0	<0.03	0.022	3.78	3.16	7.62	21.5	Water source moved to Well 12, new hypochlorite solution
5/19/16	1700						2.28	1.80			
5/20/16	0701	15	6	5400	<0.03	0.028	1.12	0.86	7.62	20.0	
5/20/16	0800	16	6	5760							Lab sampling

Column 3 6 gpm/ft² LayneOx™											
Date	Time	Time Elapsed (hrs)	Loading Rate (GPM/ft. ²)	Total Flov (Gal.)	w Fe (mg/L)	Mn (mg/L)	Free Cl2 (mg/L) Influent	Free Cl2 (mg/L) Effluent	рН	Temp. (°C)	Notes
5/19/16	1558	0	6	0	<0.03	0.003	3.78	1.62	7.53	21.4	Water source moved to Well 12, new hypochlorite solution
5/19/16	1700	1	6	360			2.28	0.78			
5/20/16	0701	15	6	5400	< 0.03	0.028	1.12	0.42	7.60	19.7	
5/20/16	0800	16	6	5760							Lab sampling

Appendix D

Laboratory Data from FGL Inc, 853 Corporation St., Santa Paula, CA 93060

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 1 Greensand After Pilot	05/16/2016	05/17/2016	SP 1605581-001	DW
Column 1 Greensand After Pilot	05/16/2016	05/17/2016	SP 1605581-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/18/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205782 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.S.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605581-001 Customer ID : 2-200

Sampled On	: May 16, 2016-13:52
Sampled By	: Ruth Haldeman
Received On	: May 17, 2016-15:34
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Sample Analysis	
constituent	Result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}			1.	1.1.1			1	11. A. 194
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205782	200.7	05/18/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205782	200.7	05/18/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605581-002 Customer ID : 2-200

Sampled On	: May 16, 2016-16:57
Sampled By	: Ruth Haldeman
Received On	: May 17, 2016-15:34
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Sample Analysis	
constituent	Result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}			1.	1.1.1			1	11. A. 194
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205782	200.7	05/18/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205782	200.7	05/18/16:206966

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

ENVIRONMENTAL AGRICULTURAL Analytical Chemists

		Quality Cont	rol - Ino	ranie				
Constituent	Method	Date/ID	Type	Units	Conc.	OC Data	DOO	Note
	Method	Date/ID	Туре	Units	Conc.	QC Data	DQU	Note
Metals Iron	200.7	(SP 1605567-003)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	103 % 117 % 12.9%	75-125 75-125 <20.0	
	200.7	05/18/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	102 % 0.0038 103 % 0.0033	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605567-003)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	105 % 119 % 11.8%	75-125 75-125 ≤20.0	
	200.7	05/18/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	106 % 0.00005 106 % 0.00004	90-110 0.01 90-110 0.01	
CCB : Cont MS Matu MSD : Matu are an MSRPD : MS/ and au	tinuing Calibration Verific tinuing Calibration Blank - ix Spikes - A random sam affects analyte recovery. rix Spike Duplicate of MS/ indication of how that sam MSD Relative Percent Dif nalysis. Ouality Objective - This i	Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects anal ference (RPD) - The M	instrument b wn amount c ample duplic yte recovery. S relative per	aseline is wit f analyte. Th cate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi-	are an indication and amount of a cation of precis	nalyted. The	recoverie

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605690-001 Customer ID : 2-200

00
54

Sample Result - Inorganic

Constituent	Result	POL	Units MCL/AL		Sample Preparation		Samp	le Analysis
Constituent	Kesuit	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.7.21			1	11. A. 1984
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205789	200.7	05/19/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205789	200.7	05/19/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605690-001 Customer ID : 2-200

00
54

Sample Result - Inorganic

Constituent	Result	POL	Units MCL/AL		Sample Preparation		Samp	le Analysis
constituent	Result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.2.21			1	
Iron	ND	30	ug/L	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205789	200.7	05/19/16:206966

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL. (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Staglecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5818 TEL: (750)783-2940

2.04

May 24, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605690-002 Customer ID : 2-200

Sampled On	: May 17, 2016-17:35
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:54
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	ND	20	/1	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Iron Manganese	ND ND	30 10	ug/L ug/L	50 ²	200.7	05/18/16:205789	200.7 200.7	05/19/16:206966

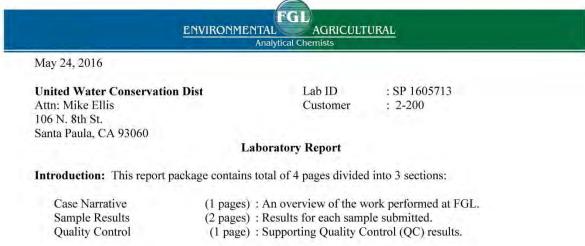
			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
			CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (259)242-0182 TEL: (530)343-5618 TEL: (57)783-2940

FGL ENVIRONMENTAL AGRICULTURAL Analytical Chemists

United Wa	ater Conservation Dist			Custom	er	: 2-200		
		Quality Cont	rol - Ino	rganic				
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	111 % 109 % 1.4%	75-125 75-125 <20.0	
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	103 % 0.0032 102 % 0.0032	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	113 % 112 % 1.7%	75-125 75-125 ≤20.0	
200.3	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	105 % 0.00004 105 % 0.00004	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD MSRPD DQO	Continuing Calibration Verific Continuing Calibration Blank - Matrix Spikes - A random sam matrix affects analyte recovery. Matrix Spike Duplicate of MS/ are an indication of how that san MS/MSD Relative Percent Diff and analysis. Data Quality Objective - This i	Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects analy ference (RPD) - The MS	instrument b wn amount c ample duplic yte recovery. S relative per	ment calibrat paseline is wi of analyte. Th cate is spiked rcent differen	thin criteria. e recoveries with a know ce is an indi	are an indicati vn amount of a cation of precis	nalyted. The	recoverie

Page 4 of 4 Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810
 Corporate Offices & Laboratory
 Office & Laboratory
 Office & Laboratory
 Office & Laboratory
 Office & Laboratory

 853 Corporation Street
 2500 Stagecoach Road
 563 E. Lindo Avenue
 3442 Empresa Drive, Suite D


 Santa Paula, CA 93060
 Stockton, CA 95215
 Chico, CA 95926
 San Luis Obispo, CA 93401

 TEL: (805)392-2000
 TEL: (209)942-0182
 TEL: (530)343-5818
 TEL: (805/783-2940

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0423
 FAX: (530)343-3807
 FAX: (805)783-2912

 CA ELAP Certification No. 1573
 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2757

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 1 Greensand After Pilot	05/18/2016	05/19/2016	SP 1605713-001	DW
Column 1 Greensand After Pilot	05/18/2016	05/19/2016	SP 1605713-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/20/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605713-001 Customer ID : 2-200

: May 18, 2016-08:42
: Ruth Haldeman
: May 19, 2016-10:19
: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL Units	Units	Units MCL/AL	Sample Preparation		Sample Analysi	
constituent	result		omo		Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	-		1	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/20/16:206891

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95226 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (259)942-0182 TEL: (530)343-5818 TEL: (57)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

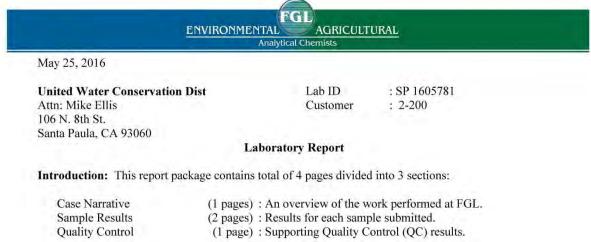
Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605713-002 Customer ID : 2-200

Sampled On	: May 18, 2016-15:46
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL Units	Units	Units MCL/AL	Sample Preparation		Sample Analysi	
constituent	result		omo		Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	-		1	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/20/16:206891

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810



ENVIRONMENTAL Analytical Chemists

United W	ater Conservation Dis	t	Customer			: 2-200					
Quality Control - Inorganic											
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note			
Metals Iron	200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	103 % 103 % 0.7%	75-125 75-125 ≤20.0				
	200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	98.2 % 0.00003 100 % -0.0002	90-110 0.03 90-110 0.03				
Manganese	200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	107 % 105 % 2.7%	75-125 75-125 ≤20.0				
	200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	97.3 % 0.00003 99.6 % 0.0002	90-110 0.01 90-110 0.01				
Definition CCV CCB MS MSD MSRPD DQO	: Continuing Calibration Verifi : Continuing Calibration Blank : Matrix Spikes - A random sar matrix affects analyte recovery : Matrix Spike Duplicate of MS are an indication of how that se : MS/MSD Relative Percent Di and analysis. : Data Quality Objective - This	- Analyzed to verify the nple is spiked with a kno /MSD pair - A random s mple matrix affects analy freence (RPD) - The MS	instrument b wn amount o ample duplic yte recovery. S relative per	aseline is wi f analyte. Th ate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi-	are an indication and amount of a cation of precis	nalyted. The	recoverie			

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 281

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 1 Greensand After Pilot	05/19/2016	05/20/2016	SP 1605781-001	DW	
Column 1 Greensand After Pilot	05/20/2016	05/20/2016	SP 1605781-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/23/2016:207249 All analysis quality controls are within established criteria	
	05/23/2016:206004 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

100

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605781-001 Customer ID : 2-200

Sampled On	: May 19, 2016-16:15
Sampled By	: R.M./N.S.
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	ult POL Units	Result POL Units MCL/AL Samp		Sample	Preparation	Sample Analysis	
constituent	result		omits medine	Method	Date/ID	Method	Date/1D	
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	1			Sec. 2
Iron	ND	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

0.00
Office & Laboratory
9415 W. Goshen Avenue
Visalía, CA 93291
TEL: (559)734-9473
FAX: (559)734-8435
75 CA ELAP Certification No. 2810
77

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description: Column 1 Greensand After PilotProject: Pilot Study-Column 1 Greensand

Lab ID : SP 1605781-002 Customer ID : 2-200

Sampled On: May 20, 2016-08:00Sampled By: R.M./N.S.Received On: May 20, 2016-13:26Matrix: Drinking Water

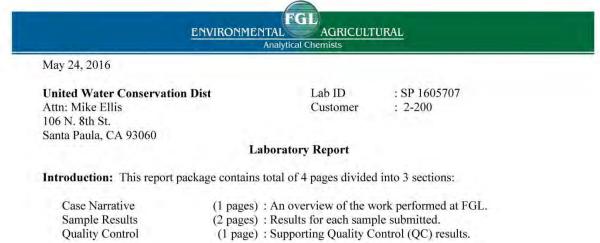
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		1000	1.11	1.7.31	1	Sec. 3	1.00	the sta
Iron	ND	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95292 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (259)942-0182 TEL: (530)343-5818 TEL: (57)783-2940

ENVIRONMENTAL Analytical Chemists

Quality Control - Inorganic


May 25, 2016	
United Water Conservation	Dist

Lab ID Customer : SP 1605781 : 2-200

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals							1.1	
Iron	200.7		MS	ug/L	4000	105 %	75-125	
		(SP 1605780-002)	MSD	ug/L	4000	103 %	75-125	
			MSRPD	ug/L	800.0	1.7%	≤20.0	
		(CD 1605795 000)	MS	ug/L	4000	108 %	75-125	
		(SP 1605785-006)	MSD MSRPD	ug/L ug/L	4000 800.0	3.0%	75-125 <20.0	
	200.7	05/23/16:207249AC	CCV	~	5.000	97.3 %	90-110	
	200.7	05/25/10.207249AC	CCB	ppm	5.000	-0.0006	0.03	
		and the second sec	CCV	ppm ppm	5.000	99.6%	90-110	
			CCB		5.000	-0.0003	0.03	
			CCV	ppm ppm	5.000	102 %	90-110	
		to an an an and	CCB	ppm	5.000	-0.0003	0.03	
Manganese	200.7		MS	ug/L	800.0	103 %	75-125	-
ungunese	200.7	(SP 1605780-002)	MSD	ug/L	800.0	103 %	75-125	
		(31 1003/00 002)	MSRPD	ug/L	800.0	0.6%	<20.0	
			MS	ug/L	800.0	107 %	75-125	
		(SP 1605785-006)	MSD	ug/L	800.0	101 %	75-125	
		No. Contractor of the	MSRPD	ug/L	800.0	5.0%	≤20.0	
	200.7	05/23/16:207249AC	CCV	ppm	1.000	94.1 %	90-110	
			CCB	ppm		-0.00001	0.01	
			CCV	ppm	1.000	96.5 %	90-110	
			CCB	ppm		0.00004	0.01	
			CCV	ppm	1.000	100 %	90-110	
		a la companya da serie de la companya de la compa	CCB	ppm		-0.00002	0.01	
Definition				H-s	The second second			
CCV	: Continuing Calibration Verific					criteria.		
CCB	: Continuing Calibration Blank							
MS	: Matrix Spikes - A random san		wn amount o	f analyte. Th	e recoveries	are an indication	on of how the	at sample
ing.	matrix affects analyte recovery.							
MSD	: Matrix Spike Duplicate of MS			ate is spiked	with a know	n amount of an	nalyted. The	recoveri
THE P	are an indication of how that sa							
MSRPD	: MS/MSD Relative Percent Di	fference (RPD) - The MS	s relative per	cent differen	ce is an india	cation of precis	ion for the pr	reparatic
	and analysis.							
DQO	: Data Quality Objective - This	ic the criteria against wh	ich the qualit	a control dat	a ic compare	ave.		

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 1 Greensand After Pilot	05/19/2016	05/19/2016	SP 1605707-001	DW
Column 1 Greensand After Pilot	05/19/2016	05/19/2016	SP 1605707-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605707-001 Customer ID : 2-200

Sampled On	: May 19, 2016-03:00
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		13524	1.11		-	Same al	inc	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95292 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drivé, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5618 TEL: (57)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605707-002 Customer ID : 2-200

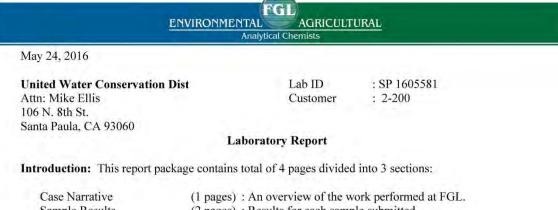
Sampled On	: May 19, 2016-07:04
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
Constituent	Result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1 Lange - 24		1.176	1		- C C.		
Iron	ND	30	ug/L	300^{2}	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Silica	26	1	mg/L	1.00	200.7	05/19/16:205849	200,7	05/19/16:206891

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

ENVIRONMENTAL Analytical Chemists


May 24, 2016	
United Water Conservation	Dist

Lab ID Customer : SP 1605707 : 2-200

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L. ug/L. ug/L.	4000 4000 800.0	98.3 % 98.1 % 0.2%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	96.0 % 0.00005 98.2 % 0.00003	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	98.3 % 96.2 % 2.1%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	99.0 % 0.00009 97.3 % 0.00003	90-110 0.01 90-110 0.01	
	200.7	(SP 1605706-001)	MS MSD MSRPD	mg/L mg/L mg/L	2.400 2.400 800.0	67.4 % 63.0 % 0.7%	<1¼ <1¼ ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.6 % 0.07 95.6 % 0.07	90-110 1 90-110 1	
CCB : Conti MS : Matri matrix MSD : Matri are an MSRPD : MS/N and an <% : High	nuing Calibration Verific nuing Calibration Blank x Spikes - A random sam affects analyte recovery. x Spike Duplicate of MS, indication of how that sar ISD Relative Percent Dif alysis. Sample Background - Sp Quality Objective - This i	 Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects anal ference (RPD) - The MS ike concentration was let 	instrument b wn amount o ample duplic yte recovery. S relative per ss than one f	aseline is wit f analyte. Th ate is spiked cent differen orth of the sa	thin criteria, e recoveries with a know ce is an indic ample concer	are an indicati n amount of a cation of precis ntration.	nalyted. The	recoveries

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 1 Greensand After Pilot	05/16/2016	05/17/2016	SP 1605581-001	DW	
Column 1 Greensand After Pilot	05/16/2016	05/17/2016	SP 1605581-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/18/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205782 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

signed by Kelly A. Dunnahon, B.S.

-

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605581-001 Customer ID : 2-200

Sampled On	: May 16, 2016-13:52
Sampled By	: Ruth Haldeman
Received On	: May 17, 2016-15:34
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
Constituent	Kesuit	TQL	Units	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.22			1	1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205782	200.7	05/18/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205782	200.7	05/18/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

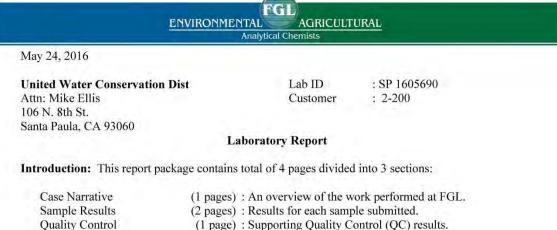
Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605581-002 Customer ID : 2-200

Sampled On	: May 16, 2016-16:57
Sampled By	: Ruth Haldeman
Received On	: May 17, 2016-15:34
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result POL	Units MCL/AL		Sample Preparation		Sample Analysis		
	Result	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}			1.	1.1.1			1	11. A. 194
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205782	200.7	05/18/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205782	200.7	05/18/16:206966

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810



ENVIRONMENTAL AGRICULTURAL Analytical Chemists

		Quality Cont	rol - Ino	ranie				
Constituent	Method	Date/ID	Type	Units	Conc.	OC Data	DOO	Note
	Method	Date/ID	Туре	Units	Conc.	QC Data	DQU	Note
Metals Iron 200.7	(SP 1605567-003)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	103 % 117 % 12.9%	75-125 75-125 <20.0		
	200.7	05/18/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	102 % 0.0038 103 % 0.0033	90-110 0.03 90-110 0.03	
	200.7	(SP 1605567-003)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	105 % 119 % 11.8%	75-125 75-125 ≤20.0	
	200.7	05/18/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	106 % 0.00005 106 % 0.00004	90-110 0.01 90-110 0.01	
CCB : Cont MS Matu MSD : Matu are an MSRPD : MS/ and au	tinuing Calibration Verific tinuing Calibration Blank - ix Spikes - A random sam affects analyte recovery. rix Spike Duplicate of MS/ indication of how that sam MSD Relative Percent Dif nalysis. Ouality Objective - This i	Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects anal ference (RPD) - The M	instrument b wn amount c ample duplic yte recovery. S relative per	aseline is wit f analyte. Th cate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi-	are an indication and amount of a cation of precis	nalyted. The	recoverie

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalía, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

Case Narrative	(1 pages) : An overview of the work performed at FGL
ample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 1 Greensand After Pilot	05/17/2016	05/18/2016	SP 1605690-001	DW	
Column 1 Greensand After Pilot	05/17/2016	05/18/2016	SP 1605690-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205789 All preparation quality controls are within established criteria	- 1

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

signed by Kelly A. Dunnahoo, B.S.

2016-05-25

-

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605690-001 Customer ID : 2-200

00
54

Sample Result - Inorganic

Constituent	Result POL	Units MCL/AL		Sample Preparation		Sample Analysis		
Constituent	Result	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.2.21			1	
Iron	ND	30	ug/L	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205789	200.7	05/19/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

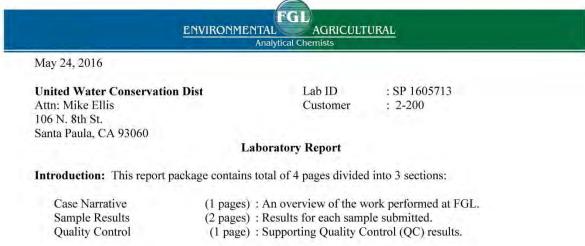
Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605690-002 Customer ID : 2-200

Sampled On	: May 17, 2016-17:35
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:54
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	ND	20	/1	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Iron Manganese	ND ND	30 10	ug/L ug/L	50 ²	200.7	05/18/16:205789	200.7 200.7	05/19/16:206966

			Page 3 of 4	
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue	
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291	
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473	
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435	
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810	
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95295 TEL: (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suitle D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (209)942-0182 TEL: (530)343-5818 TEL: (87)783-2940	



FGL ENVIRONMENTAL AGRICULTURAL Analytical Chemists

United wa	ter Conservation Dist			Custom	er	: 2-200		
		Quality Cont	rol - Ino	rganic				
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	111 % 109 % 1.4%	75-125 75-125 <20.0	
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	103 % 0.0032 102 % 0.0032	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	113 % 112 % 1.7%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	105 % 0.00004 105 % 0.00004	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD MSRPD DQO	Continuing Calibration Verifice Continuing Calibration Blank - Matrix Spikes - A random sam matrix affects analyte recovery. Matrix Spike Duplicate of MS// are an indication of how that san MS/MSD Relative Percent Diff and analysis. Data Ouality Objective - This is	Analyzed to verify the ole is spiked with a kno MSD pair - A random s ople matrix affects anal erence (RPD) - The M	instrument b wn amount c ample duplic yte recovery. S relative per	aseline is wit of analyte. Th cate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi	are an indication of amount of a cation of precis	nalyted. The	recover

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573			CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 1 Greensand After Pilot	05/18/2016	05/19/2016	SP 1605713-001	DW
Column 1 Greensand After Pilot	05/18/2016	05/19/2016	SP 1605713-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/20/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605713-001 Customer ID : 2-200

: May 18, 2016-08:42
: Ruth Haldeman
: May 19, 2016-10:19
: Drinking Water

Sample Result - Inorganic

Constituent	Result POL		Units	MCL/AL	Sample Preparation		Sample Analysis	
constituent	result	· · ·		meditib	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	-		1	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/20/16:206891

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

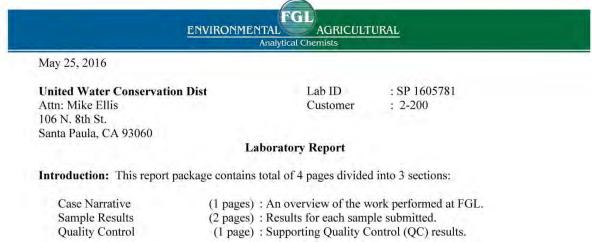
Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605713-002 Customer ID : 2-200

Sampled On	: May 18, 2016-15:46
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result POL		Units	MCL/AL	Sample Preparation		Sample Analysis	
constituent	result	· · ·		meditib	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	-		1	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/20/16:206891

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810



ENVIRONMENTAL AGRICULTURAL Analytical Chemists

United W	United Water Conservation Dist			Customer					
Quality Control - Inorganic									
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note	
Metals Iron	200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	103 % 103 % 0.7%	75-125 75-125 <20.0		
	200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	98.2 % 0.00003 100 % -0.0002	90-110 0.03 90-110 0.03		
Manganese	200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	107 % 105 % 2.7%	75-125 75-125 <20.0		
	200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	97.3 % 0.00003 99.6 % 0.0002	90-110 0.01 90-110 0.01		
Definition CCV CCB MS MSD MSRPD DQO	: Continuing Calibration Verifi : Continuing Calibration Blank : Matrix Spikes - A random sar matrix affects analyte recovery : Matrix Spike Duplicate of Ms are an indication of how that ss : MS/MSD Relative Percent Di and analysis. : Data Quality Objective - This	- Analyzed to verify the nple is spiked with a kno /MSD pair - A random s imple matrix affects analy freence (RPD) - The MS	instrument b wn amount o ample duplic yte recovery. S relative per	aseline is wi f analyte. Th ate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi	are an indication of amount of a cation of precis	nalyted. The	recoverie	

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 281

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 1 Greensand After Pilot	05/19/2016	05/20/2016	SP 1605781-001	DW
Column 1 Greensand After Pilot	05/20/2016	05/20/2016	SP 1605781-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/23/2016:207249 All analysis quality controls are within established criteria	
	05/23/2016:206004 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605781-001 Customer ID : 2-200

Sampled On	: May 19, 2016-16:15
Sampled By	: R.M./N.S.
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water
Received On	: May 20, 2016-13:26

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample Preparation		Samp	le Analysis
conomicon	result		ome	meditis	Method	Date/ID	Method	Date/1D
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	1			Sec. 2
Iron	ND	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL. (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Staglecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5818 TEL: (750)783-2940

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description: Column 1 Greensand After PilotProject: Pilot Study-Column 1 Greensand

Lab ID : SP 1605781-002 Customer ID : 2-200

Sampled On: May 20, 2016-08:00Sampled By: R.M./N.S.Received On: May 20, 2016-13:26Matrix: Drinking Water

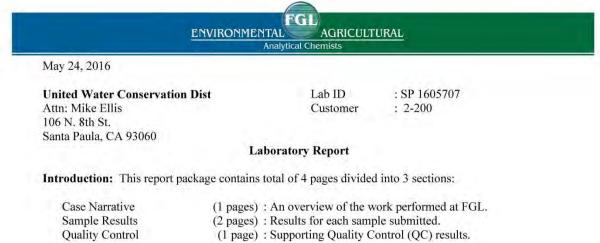
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	mple Analysis od Date/ID	
Metals, Total ^{P:1'5}		1000	1.11	1.7.31	1	Sec. 3	1.00	the state	
Iron	ND	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249	
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249	

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

ENVIRONMENTAL Analytical Chemists

Quality Control - Inorganic


May 25, 2016	
United Water Conservation	Dist

Lab ID Customer : SP 1605781 : 2-200

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								1
Iron	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	105 % 103 % 1.7%	75-125 75-125 <20.0	
			MS	ug/L	4000	108 %	75-125	
		(SP 1605785-006)	MSD	ug/L	4000	104 %	75-125	
			MSRPD	ug/L	800.0	3.0%	≤20.0	10
	200.7	05/23/16:207249AC	CCV	ppm	5.000	97.3 %	90-110	_
	the second se	the second second second	CCB	ppm	10.00	-0.0006	0.03	
			CCV	ppm	5.000	99.6 %	90-110	
			CCB	ppm	a martine	-0.0003	0.03	
			CCV	ppm	5.000	102 %	90-110	
			CCB	ppm		-0.0003	0.03	_
Manganese	200.7	0.5.2 (0.572.2.5	MS	ug/L	800.0	103 %	75-125	
		(SP 1605780-002)	MSD	ug/L	800.0	103 %	75-125	
			MSRPD	ug/L	800.0	0.6%	≤20.0	
			MS	ug/L	800.0	107 %	75-125	
		(SP 1605785-006)	MSD	ug/L	800.0	101 %	75-125	
			MSRPD	ug/L	800.0	5.0%	≤20.0	
	200.7	05/23/16:207249AC	CCV	ppm	1.000	94.1 %	90-110	
			CCB	ppm	II	-0.00001	0,01	
			CCV	ppm	1.000	96.5 %	90-110	
			CCB	ppm	1.1.1	0.00004	0.01	
			CCV	ppm	1.000	100 %	90-110	
			CCB	ppm	and an original	-0.00002	0.01	
Definition	Constant Constants			1.00	F		0.01	
CCV	: Continuing Calibration Verifi					criteria.		
CCB	: Continuing Calibration Blank							
MS	 Matrix Spikes - A random sar matrix affects analyte recovery 							
MSD	: Matrix Spike Duplicate of MS are an indication of how that sa	mple matrix affects analy	te recovery.					
MSRPD	: MS/MSD Relative Percent Di and analysis.						ion for the p	reparatio
DQO	: Data Quality Objective - This	is the criteria against wh	ich the qualit	a control dat	ic compare	and the		

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 1 Greensand After Pilot	05/19/2016	05/19/2016	SP 1605707-001	DW
Column 1 Greensand After Pilot	05/19/2016	05/19/2016	SP 1605707-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605707-001 Customer ID : 2-200

Sampled On	: May 19, 2016-03:00
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		13524	1.11		- 	Same al	inc	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 1 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605707-002 Customer ID : 2-200

Sampled On	: May 19, 2016-07:04
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

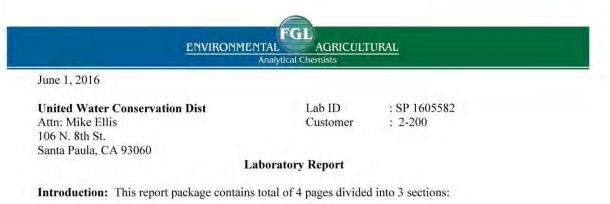
Constituent	Result	ult POL Units MCL/AL Sample Preparation		Sample Analysis				
Constituent	Kesuit	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1 Lange - 24		1.176	1		- C C.		
Iron	ND	30	ug/L	300^{2}	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Silica	26	1	mg/L	1000	200.7	05/19/16:205849	200.7	05/19/16:206891

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalía, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

ENVIRONMENTAL AGRICULTURAL Analytical Chemists

May 24, 2016	
United Water Conservation	Dist

Lab ID Customer : SP 1605707 : 2-200


Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals fron	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	98.3 % 98.1 % 0.2%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	96.0 % 0.00005 98.2 % 0.00003	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	98.3 % 96.2 % 2.1%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	99.0 % 0.00009 97.3 % 0.00003	90-110 0.01 90-110 0.01	
Silicon	200.7	(SP 1605706-001)	MS MSD MSRPD	mg/L mg/L mg/L	2.400 2.400 800.0	67.4 % 63.0 % 0.7%	<1¼ <1¼ ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.6 % 0.07 95.6 % 0.07	90-110 1 90-110 I	
CCB :C MS :M MSD :M MSRPD :M an 4 :F</td <td>ontinuing Calibration Verific ontinuing Calibration Blank - fatrix Spikes - A random sam trix affects analyte recovery. fatrix Spike Duplicate of MS, an indication of how that sar IS/MSD Relative Percent Dif d analysis. igh Sample Background - Sp ata Quality Objective - This i</td> <td>Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects anal ference (RPD) - The M</td> <td>instrument b wn amount o ample duplic yte recovery. S relative per</td> <td>aseline is wit f analyte. Th ate is spiked cent differen</td> <td>thin criteria, e recoveries with a know ce is an indic</td> <td>are an indication amount of a cation of precise</td> <td>nalyted. The</td> <td>recoverio</td>	ontinuing Calibration Verific ontinuing Calibration Blank - fatrix Spikes - A random sam trix affects analyte recovery. fatrix Spike Duplicate of MS, an indication of how that sar IS/MSD Relative Percent Dif d analysis. igh Sample Background - Sp ata Quality Objective - This i	Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects anal ference (RPD) - The M	instrument b wn amount o ample duplic yte recovery. S relative per	aseline is wit f analyte. Th ate is spiked cent differen	thin criteria, e recoveries with a know ce is an indic	are an indication amount of a cation of precise	nalyted. The	recoverio

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

Kelly A Dunnahoo, B.S.

100

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 2 Greensand After Pilot	05/16/2016	05/17/2016	SP 1605582-001	DW
Column 2 Greensand After Pilot	05/16/2016	05/17/2016	SP 1605582-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/18/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205782 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

June 1, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 2 Greensand Lab ID : SP 1605582-001 Customer ID : 2-200

: May 16, 2016-13:55
: Ruth Haldeman
: May 17, 2016-15:34
: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Unite	Units MCL/AL		Preparation	Samp	le Analysis
constituent	Result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.1.1			1	11. A. 194
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205782	200.7	05/18/16:206966
Manganese	10	10	ug/L	50 ²	200,7	05/18/16:205782	200.7	05/18/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

June 1, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

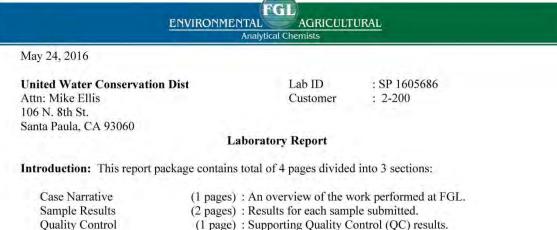
Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605582-002 Customer ID : 2-200

: May 16, 2016-16:56
: Ruth Haldeman
: May 17, 2016-15:34
: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Unite	Units MCL/AL		Preparation	Samp	le Analysis
Constituent	Kesuit	TQL	Units	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.22			1	1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205782	200.7	05/18/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205782	200.7	05/18/16:206966

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810



ENVIRONMENTAL Analytical Chemists

United W	ater Conservation Dis	Customer :			: 2-200	: 2-200		
		Quality Cont	rol - Ino	rganic				
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605567-003)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	103 % 117 % 12.9%	75-125 75-125 ≤20.0	
	200.7	05/18/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	102 % 0.0038 103 % 0.0033	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605567-003)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	105 % 119 % 11.8%	75-125 75-125 <20.0	
	200.7	05/18/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	106 % 0.00005 106 % 0.00004	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD MSRPD DQO	Continuing Calibration Verific Continuing Calibration Blank Matrix Spikes - A random sam matrix affects analyte recovery. Matrix Spike Duplicate of MS are an indication of how that sas MS/MSD Relative Percent Dil and analysis. Data Ouality Objective - This	- Analyzed to verify the pple is spiked with a kno /MSD pair - A random s nple matrix affects analy ference (RPD) - The MS	instrument b wn amount o ample duplic yte recovery. S relative per	aseline is wit f analyte. Th ate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi	are an indication of amount of a cation of precis	nalyted. The	recoverie

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

	(i puges) . This over the work performed at i o
imple Results	(2 pages) : Results for each sample submitted.
uality Control	(1 page) : Supporting Quality Control (QC) results.

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 2 Greensand After Pilot	05/17/2016	05/18/2016	SP 1605686-001	DW
Column 2 Greensand After Pilot	05/17/2016	05/18/2016	SP 1605686-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205789 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature. d by Kelly A. Dunnaho

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 2 Greensand Lab ID : SP 1605686-001 Customer ID : 2-200

: May 17, 2016-08:00
: Ruth Haldeman
: May 18, 2016-15:55
: Drinking Water

Sample Result - Inorganic

Constituent	Result POL		Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	result	1.45	Onits	WCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1			1	
Iron	ND	30	ug/L	300^{2}	200.7	05/18/16:205789	200.7	05/19/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205789	200.7	05/19/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

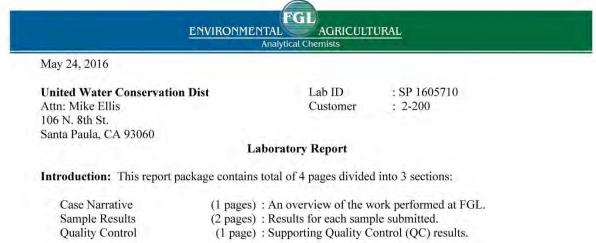
Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605686-002 Customer ID : 2-200

: May 17, 2016-17:45
: Ruth Haldeman
: May 18, 2016-15:55
: Drinking Water

Sample Result - Inorganic

Constituent	Result POL		Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/1D
Metals, Total ^{P:15}		12.2		1.2.2			1	
Iron	ND	30	ug/L	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Manganese	ND	10	ug/L	50 ²	200,7	05/18/16:205789	200.7	05/19/16:206966

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95295 TEL: (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suitle D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (209)942-0182 TEL: (530)343-5818 TEL: (87)783-2940



ENVIRONMENTAL AGRICULTURAL Analytical Chemists

		Quality Cont	nol Inc	mania							
Quality Control - Inorganic											
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note			
Metals Iron	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	111 % 109 % 1.4%	75-125 75-125 <20.0				
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	103 % 0.0032 102 % 0.0032	90-110 0.03 90-110 0.03				
Manganese	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	113 % 112 % 1.7%	75-125 75-125 ≤20.0				
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	105 % 0.00004 105 % 0.00004	90-110 0.01 90-110 0.01				
Definition CCV CCB MS MSD MSRPD DQO	: Continuing Calibration Verifica : Continuing Calibration Blank - : Matrix Spikes - A random samp matrix affects analyte recovery. : Matrix Spike Duplicate of MS/t are an indication of how that sam : MS/MSD Relative Percent Diff and analysis. : Data Quality Objective - This is	Analyzed to verify the le is spiked with a kno MSD pair - A random s ple matrix affects analy erence (RPD) - The MS	instrument t wn amount o ample duplio yte recovery. S relative per	oaseline is wit of analyte. Th cate is spiked reent differen	thin criteria. e recoveries with a know ce is an indi-	are an indication amount of a cation of precis	nalyted. The	recoverio			

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 2 Greensand After Pilot	05/18/2016	05/19/2016	SP 1605710-001	DW
Column 2 Greensand After Pilot	05/18/2016	05/19/2016	SP 1605710-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	- 5

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 2 Greensand Lab ID : SP 1605710-001 Customer ID : 2-200

: May 18, 2016-08:42
: Ruth Haldeman
: May 19, 2016-10:19
: Drinking Water

Sample Result - Inorganic

Constituent	Result POL		Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	result	1.45	Onits	WCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}		12.2	1.11	1			1	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200,7	05/19/16:205849	200.7	05/19/16:206891

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605710-002 Customer ID : 2-200

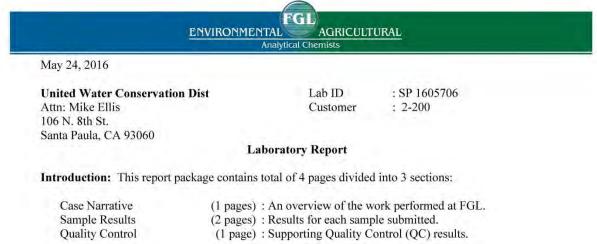
Sampled On	: May 18, 2016-15:46
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL Units		MCL/AL	Sample	Preparation	Samp	le Analysis	
constituent	result	Result I QE Onits	QL Onits	QL Onits 1	medine	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.11	1			1		
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891	
Manganese	ND	10	ug/L	50 ²	200,7	05/19/16:205849	200.7	05/19/16:206891	

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
11 11 11	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 FEL: (209)942-0182 TEL: (530)343-5818 AX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (209)942-0182 TEL: (530)343-5818 TEL: (605)783-2940

Note


FGL ENVIRONMENTAL AGRICULTURAL Analytical Chemists

May 24, 2016 United Water Conservation Dist		Quality Cont	rol - Inc	Lab ID Custom	er	: SP 160 : 2-200	5710	
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Г
Metals Iron	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	98.3 % 98.1 % 0.2%	75-125 75-125 <20.0	
200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	96.0 % 0.00005 98.2 % 0.00003	90-110 0.03 90-110 0.03		
Manganese	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	98.3 % 96.2 % 2.1%	75-125 75-125 ≤20.0	
-	200.7	05/19/16:206891AC	CCV CCB CCV	ppm ppm ppm	1.000 1.000	99.0 % 0.00009 97.3 %	90-110 0.01 90-110	

		CCV CCB	ppm ppm	1.000	97.3 % 0.00003	90-110 0.01	
Definition	The second s			1.000			
CCV	: Continuing Calibration Verification - An	alyzed to verify the instru	ment calibrat	ion is within	criteria.		
CCB	: Continuing Calibration Blank - Analyzed	to verify the instrument l	baseline is wi	thin criteria.			
MS	: Matrix Spikes - A random sample is spik matrix affects analyte recovery.	ed with a known amount	of analyte. Th	e recoveries	are an indicati	on of how th	at sample
MSD	: Matrix Spike Duplicate of MS/MSD pair are an indication of how that sample matri			with a know	n amount of a	nalyted. The	recoveries
MSRPD	: MS/MSD Relative Percent Difference (R and analysis.	PD) - The MS relative pe	ercent differen	ce is an indic	ation of preci-	sion for the p	reparation
DQO	: Data Quality Objective - This is the criter	ria against which the qual	lity control da	ta is compare	d.		

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670		

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 2 Greensand After Pilot	05/19/2016	05/19/2016	SP 1605706-001	DW	
Column 2 Greensand After Pilot	05/19/2016	05/19/2016	SP 1605706-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206891 All analysis quality controls are within established criteria	
1.1	05/19/2016:205849 All preparation quality controls are within established criteria	- 1

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 2 Greensand Lab ID : SP 1605706-001 Customer ID : 2-200

Sampled On	: May 19, 2016-03:00
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5} Iron	ND	30	ug/I	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95292 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drivé, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5618 TEL: (57)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 1 Greensand Lab ID : SP 1605706-002 Customer ID : 2-200

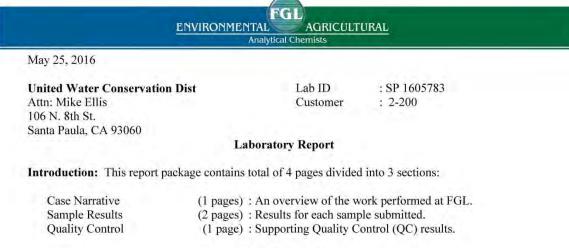
Sampled On	: May 19, 2016-07:04
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	Kesuit	TQL	Units		Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	1.000		1.176	1		- C C.		
Iron	ND	30	ug/L	300^{2}	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Silica	26	1	mg/L	1	200.7	05/19/16:205849	200,7	05/19/16:206891

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95226 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (259)942-0182 TEL: (530)343-5818 TEL: (57)783-2940

ENVIRONMENTAL Analytical Chemists


May 24, 2016	
United Water Conservation	Dist

Lab ID Customer : SP 1605706 : 2-200

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals fron 200.7 200.7 Manganese 200.7	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	98.3 % 98.1 % 0.2%	75-125 75-125 ≤20.0	
	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	96.0 % 0.00005 98.2 % 0.00003	90-110 0.03 90-110 0.03		
Manganese	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	98.3 % 96.2 % 2.1%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	99.0 % 0.00009 97.3 % 0.00003	90-110 0.01 90-110 0.01	
Silicon	200.7	(SP 1605706-001)	MS MSD MSRPD	mg/L mg/L mg/L	2.400 2.400 800.0	67.4 % 63.0 % 0.7%	<1/4 <1/4 <20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.6 % 0.07 95.6 % 0.07	90-110 1 90-110 I	
Definition CCV CCB MS	Continuing Calibration Verific Continuing Calibration Blank Matrix Spikes - A random san matrix affects analyte recovery.	 Analyzed to verify the pple is spiked with a kno 	instrument b wn amount o	nent calibrat ascline is wi f analyte. Th	thin criteria, le recoveries	are an indication		
MSD MSRPD	: Matrix Spike Duplicate of MS are an indication of how that sa : MS/MSD Relative Percent Dil and applysis	nple matrix affects anal	yte recovery.					
<¼ D00	and analysis. : High Sample Background - Sp : Data Quality Objective - This							

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 2 Greensand After Pilot	05/19/2016	05/20/2016	SP 1605783-001	DW	
Column 2 Greensand After Pilot	05/20/2016	05/20/2016	SP 1605783-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/23/2016:207249 All analysis quality controls are within established criteria	
	05/23/2016:206004 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 2 Greensand Lab ID : SP 1605783-001 Customer ID : 2-200

: May 19, 2016-16:15
: R.M./N.S.
: May 20, 2016-13:26
: Drinking Water

Sample Result - Inorganic

Constituent	Result	sult PQL Uni	Units	Units MCL/AL		Sample Preparation		le Analysis
constituent	result		ome	medine	Method	Date/ID	Method	Date/1D
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	1			Sec. 2
Iron	ND	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 2 Greensand After Pilot Project : Pilot Study-Column 2 Greensand Lab ID : SP 1605783-002 Customer ID : 2-200

Sampled On	: May 20, 2016-08:00
Sampled By	: R.M./N.S.
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water
Matrix	: Drinking Water

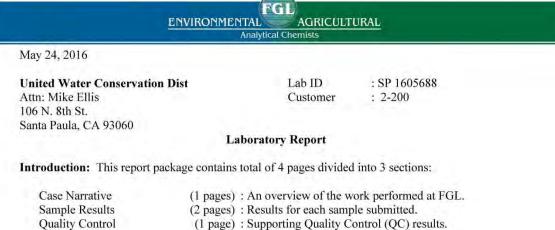
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		1000	1.11	1.7.31	1	Sec. 3	1.00	the state
Iron	ND	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

ENVIRONMENTAL Analytical Chemists

way 25	5, 2016
United	Water Conservation Dist


Lab ID Customer : SP 1605783 : 2-200

Quality Control - Inorganic

Constituent Meth		Method Date/ID		Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	105 % 103 % 1.7%	75-125 75-125 <20.0	
	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000	97.3 % -0.0006 99.6 % -0.0003	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	103 % 103 % 0.6%	75-125 75-125 ≤20.0	
	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	94.1 % -0.00001 96.5 % 0.00004	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD MSD	: Continuing Calibration Verifi : Continuing Calibration Blank : Matrix Spikes - A random sar matrix affects analyte recovery : Matrix Spike Duplicate of M are an indication of how that sa : MS/MSD Relative Percent D	- Analyzed to verify the nple is spiked with a kno MSD pair - A random s mple matrix affects analy	instrument b wn amount o ample duplic yte recovery.	nent calibrati aseline is wit f analyte. Th ate is spiked	thin criteria. te recoveries with a know	are an indicati	nalyted. The	recoverie
DQO	and analysis. : Data Quality Objective - This	is the criteria against wh	ich the quali	ty control dat	ta is company	ed.		

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 281

lase Narrative	(1 pages) : An overview of the work performed at FGL
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 3 LayneOx After Pilot	05/17/2016	05/18/2016	SP 1605688-001	DW	
Column 3 LayneOx After Pilot	05/17/2016	05/18/2016	SP 1605688-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205789 All preparation quality controls are within established criteria	- 1

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

signed by Kelly A. Dunnahoo, B.S.

-

Date: 2016-05-25

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605688-001 Customer ID : 2-200

Sampled On	: May 17, 2016-08:00
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:55
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	ND	20		300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Iron Manganese	ND ND	30 10	ug/L ug/L	50 ²	200.7	05/18/16:205789	200.7 200.7	05/19/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605688-002 Customer ID : 2-200

Sampled On	: May 17, 2016-16:44
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:55
Matrix	: Drinking Water

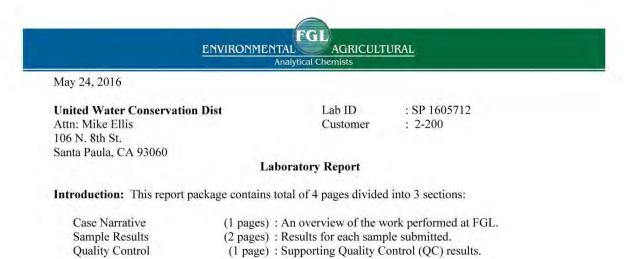
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	ND	20		300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Iron Manganese	ND ND	30 10	ug/L ug/L	50 ²	200.7	05/18/16:205789	200.7 200.7	05/19/16:206966

				Page 3 of 4	
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue	
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291	
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473	
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435	
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810	

ENVIRONMENTAL Analytical Chemists

May 24, 2016	
United Water Conservation	Dist


Lab ID Customer : SP 1605688 : 2-200

Quality	Control -	Inorganic
· · · · · ·	No. Service Co.	

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals							1	
Iron	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	111 % 109 % 1.4%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	103 % 0.0032 102 % 0.0032	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	113 % 112 % 1.7%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	105 % 0.00004 105 % 0.00004	90-110 0.01 90-110 0.01	
Definition	a second and a second	- landa da relativo	1			-		
CCV CCB MS	 Continuing Calibration Verifi Continuing Calibration Blank Matrix Spikes - A random sar matrix affects analyte recovery 	- Analyzed to verify the nple is spiked with a kno	instrument b	aseline is wi	thin criteria.		on of how th	at sample
MSD	: Matrix Spike Duplicate of Ma are an indication of how that sa	S/MSD pair - A random s ample matrix affects anal	yte recovery.					
MSRPD	: MS/MSD Relative Percent D and analysis.					1.	tion for the p	reparation
DQO	: Data Quality Objective - This	is the criteria against wh	ich the quali	ty control da	ta is compare	ed.		

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 3 LayneOx After Pilot	05/18/2016	05/19/2016	SP 1605712-001	DW	
Column 3 LayneOx After Pilot	05/18/2016	05/19/2016	SP 1605712-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/20/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605712-001 Customer ID : 2-200

Sampled On	: May 18, 2016-08:42
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		1000	1.11	1.7.21	1		· · · ·	
Iron	40	30	ug/L	300^{2}	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	10	10	ug/L	50 ²	200,7	05/19/16:205849	200.7	05/20/16:206891

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL. (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Staglecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5818 TEL: (750)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605712-002 Customer ID : 2-200

: May 18, 2016-15:46
: Ruth Haldeman
: May 19, 2016-10:19
: Drinking Water

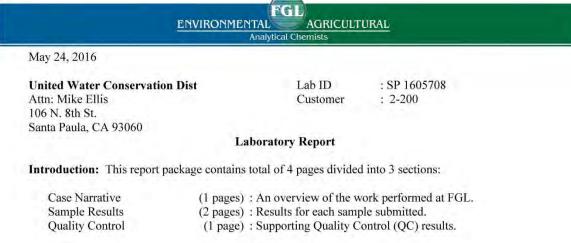
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15} Iron Manganese	ND ND	30 10	ug/L ug/L	300^{2} 50^{2}	200.7 200.7	05/19/16:205849 05/19/16:205849	200.7 200.7	05/20/16:206891 05/20/16:206891

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

ENVIRONMENTAL Analytical Chemists

May 24, 2016		
United Water Conservation Dist		


Lab ID Customer : SP 1605712 : 2-200

Quality Control - Inorganic

Constituent	N	lethod	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron		200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	103 % 103 % 0.7%	75-125 75-125 ≤20.0	
		200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	98.2 % 0.00003 100 % -0.0002	90-110 0.03 90-110 0.03	
Manganese		200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	107 % 105 % 2.7%	75-125 75-125 ≤20.0	
		200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	97.3 % 0.00003 99.6 % 0.0002	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD	: Continuing Calibratic : Matrix Spikes - A ran matrix affects analyte r : Matrix Spike Duplica are an indication of hom	n Blank - dom sam ecovery. te of MS/ w that sar	ation - Analyzed to veri Analyzed to verify the ple is spiked with a kno MSD pair - A random s nple matrix affects analy	instrument b wn amount o ample duplic /te recovery.	nent calibrati aseline is wit f analyte. Th ate is spiked	thin criteria. e recoveries with a know	are an indication	nalyted. The	recoverie
MSRPD DQO	and analysis.		ference (RPD) - The MS s the criteria against wh					ion for the p	eparatior

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 3 LayneOx After Pilot	05/19/2016	05/19/2016	SP 1605708-001	DW
Column 3 LayneOx After Pilot	05/19/2016	05/19/2016	SP 1605708-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605708-001 Customer ID : 2-200

: May 19, 2016-03:01
: Ruth Haldeman / Norm
: May 19, 2016-10:19
: Drinking Water

Sample Result - Inorganic

Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
ND.	20	1	2002				
							05/19/16:206891
	Result ND ND	ND 30	ND 30 ug/L	ND 30 ug/L 300 ²	Result PQL Units MCL/AL Method ND 30 ug/L 300 ² 200.7	ND 30 ug/L 300 ² 200.7 05/19/16:205849	Result PQL Units MCL/AL Method Date/ID Method ND 30 ug/L 300 ² 200.7 05/19/16:205849 200.7

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605708-002 Customer ID : 2-200

: May 19, 2016-07:04
: Ruth Haldeman / Norm
: May 19, 2016-10:19
: Drinking Water

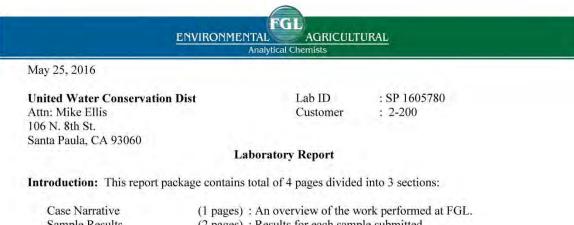
Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
Constituent	Kesuit	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	1.000		1.176			- C C.		
Iron	ND	30	ug/L	300^{2}	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Silica	27	1	mg/L	1-1-10-1-1	200.7	05/19/16:205849	200.7	05/19/16:206891

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

ENVIRONMENTAL AGRICULTURAL Analytical Chemists

May 24, 2016	
United Water Conservation	Dist


Lab ID Customer : SP 1605708 : 2-200

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L. ug/L. ug/L.	4000 4000 800.0	98.3 % 98.1 % 0.2%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	96.0 % 0.00005 98.2 % 0.00003	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	98.3 % 96.2 % 2.1%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	99.0 % 0.00009 97.3 % 0.00003	90-110 0.01 90-110 0.01	
Silicon	200.7	(SP 1605706-001)	MS MSD MSRPD	mg/L mg/L mg/L	2.400 2.400 800.0	67.4 % 63.0 % 0.7%	<1/4 <1/4 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.6 % 0.07 95.6 % 0.07	90-110 1 90-110 I	
Definition CCV CCB MS MSD MSRPD <%	: Continuing Calibration Verific : Continuing Calibration Blank : Matrix Spikes - A random san matrix affects analyte recovery. : Matrix Spike Duplicate of MS are an indication of how that sa : MS/MSD Relative Percent Dil and analysis. : High Sample Background - Sp	 Analyzed to verify the pple is spiked with a kno /MSD pair - A random s mple matrix affects anal ference (RPD) - The MS 	instrument b wn amount c ample duplic yte recovery. S relative per	aseline is wi of analyte. Th cate is spiked cent differen	thin criteria, e recoveries with a know ce is an indi-	are an indication and amount of an	nalyted. The	recoverie

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

109

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 3 LayneOx After Pilot	05/19/2016	05/20/2016	SP 1605780-001	DW
Column 3 LayneOx After Pilot	05/20/2016	05/20/2016	SP 1605780-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/23/2016:207249 All analysis quality controls are within established criteria	
	05/23/2016:206004 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.S.

THE

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605780-001 Customer ID : 2-200

Sampled On	: May 19, 2016-16:00
Sampled By	: Ruth Maldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
conomicon	result		ome	meditis	Method	Date/ID	Method	Date/1D
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	1			Sec. 2
Iron	ND	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 3 LayneOx After Pilot Project : Pilot Study-Column 3 LayneOx Lab ID : SP 1605780-002 Customer ID : 2-200

Sampled On	: May 20, 2016-08:00
Sampled By	: Ruth Maldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Result - Inorganic

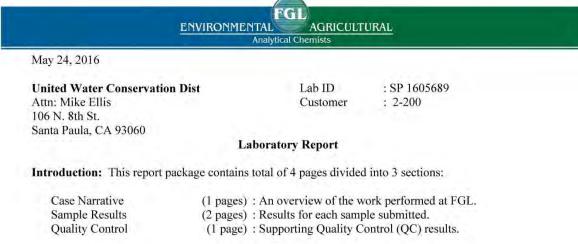
Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P-1'5}					1			h la des renera
Iron	ND	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200,7	05/23/16:206004	200.7	05/23/16:207249

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

1

ENVIRONMENTAL Analytical Chemists

May 25, 2016	
United Water Conservation	Dist


Lab ID Customer : SP 1605780 : 2-200

ality	Control .	- Inorganic
	ality	ality Control -

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(STK1636155-010) (SP 1605780-002)	MS MSD MSRPD MS MSD	ug/L ug/L ug/L ug/L ug/L	4000 4000 800.0 4000 4000	113 % 120 % 6.6% 105 % 103 %	75-125 75-125 ≤20.0 75-125 75-125	
	200.7	05/23/16:207249AC	MSRPD CCV CCB CCV CCB	ug/L. ppm ppm ppm ppm	800.0 5.000 5.000	1.7% 101 % -0.0005 97.3 % -0.0006	≤20.0 90-110 0.03 90-110 0.03	
Manganese	200.7	(STK1636155-010) (SP 1605780-002)	MS MSD MSRPD MS MSD MSRPD	ug/L ug/L ug/L ug/L ug/L ug/L	800.0 800.0 800.0 800.0 800.0 800.0	113 % 119 % 5.2% 103 % 103 % 0.6%	75-125 75-125 ≤20.0 75-125 75-125 ≤20.0	
	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000	99.9 % -0.00009 94.1 % -0.00001	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD MSD	: Continuing Calibration Verif : Continuing Calibration Blanl : Matrix Spikes - A random sa matrix affects analyte recover : Matrix Spike Duplicate of M are an indication of how that s : MS/MSD Relative Percent D and analysis.	 Analyzed to verify the mple is spiked with a kno /. S/MSD pair - A random s ample matrix affects anal 	fy the instrum instrument b wn amount c ample duplic yte recovery.	nent calibrat aseline is wi f analyte. Th rate is spiked	thin criteria. le recoveries with a know	criteria. are an indication are amount of a	on of how th nalyted. The	recoverie
DQO	: Data Quality Objective - Thi	s is the criteria against wh	ich the quali	ty control day	ta is compare	ed.		

	Office & Laboratory	Office & Laboratory	Office & Laboratory
gecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
9)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
9)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
00 00	CA 95215)942-0182 9942-0423	CA 95215 Chico, CA 95926)942-0182 TEL: (530)343-5818)942-0423 FAX: (530)343-3807	CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401)942-0182 TEL: (530)343-5818 TEL: (805)783-2940

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 4 LayneOx After Pilot	05/17/2016	05/18/2016	SP 1605689-001	DW
Column 4 LayneOx After Pilot	05/17/2016	05/18/2016	SP 1605689-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206966 All analysis quality controls are within established criteria	
	05/18/2016:205789 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605689-001 Customer ID : 2-200

Sampled On	: May 17, 2016-08:00
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:55
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	ND	20	/1	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Iron Manganese	ND ND	30 10	ug/L ug/L	50 ²	200.7	05/18/16:205789	200.7 200.7	05/19/16:206966

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605689-002 Customer ID : 2-200

Sampled On	: May 17, 2016-16:44
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:55
Matrix	: Drinking Water

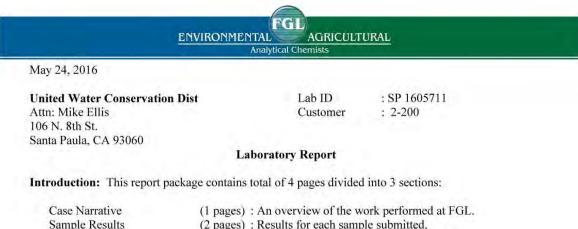
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	ND	20	/1	300 ²	200.7	05/18/16:205789	200.7	05/19/16:206966
Iron Manganese	ND ND	30 10	ug/L ug/L	50 ²	200.7	05/18/16:205789	200.7 200.7	05/19/16:206966

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 TEL: (209)942-0182 TEL (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (259)242-0182 TEL: (530)343-5618 TEL: (57)783-2940

FGL ENVIRONMENTAL AGRICULTURAL Analytical Chemists

	2 ·
May 24, 201	
United Wate	er Conservation Dis


Lab ID Customer : SP 1605689 : 2-200

Quality Control - Inorganic	Quality	Control -	Inorganic
------------------------------------	---------	-----------	-----------

detals ron			Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
		200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 4000	111 % 109 % 1.4%	75-125 75-125 ≤20.0	
		200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	103 % 0.0032 102 % 0.0032	90-110 0.03 90-110 0.03	
Aanganese		200.7	(SP 1605686-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 4000	113 % 112 % 1.7%	75-125 75-125 ≤20.0	
		200.7	05/19/16:206966AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	105 % 0.00004 105 % 0.00004	90-110 0.01 90-110 0.01	
Definition CCV CCB MS	: Continuing Calibratics : Matrix Spikes - A matrix affects analy	ation Blank - random sam te recovery.	ation - Analyzed to veri Analyzed to verify the ple is spiked with a kno MSD pair - A random s	instrument b wn amount o	aseline is wit f analyte. Th	thin criteria. e recoveries	are an indication		
MSD MSRPD DQO	are an indication of : MS/MSD Relative and analysis.	how that san Percent Dif	nple matrix affects anal ference (RPD) - The M s the criteria against wh	yte recovery. S relative per	cent differen	ce is an indic	cation of precis		

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 281

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 4 LayneOx After Pilot	05/18/2016	05/19/2016	SP 1605711-001	DW	
Column 4 LayneOx After Pilot	05/18/2016	05/19/2016	SP 1605711-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/20/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	- K.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.S.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605711-001 Customer ID : 2-200

Sampled On	: May 18, 2016-08:42
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water
maum	, Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		1.00			1			h dan ke senistra
Iron	ND	30	ug/L	300^{2}	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/20/16:206891

			Page 2 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL. (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Staglecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5818 TEL: (750)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

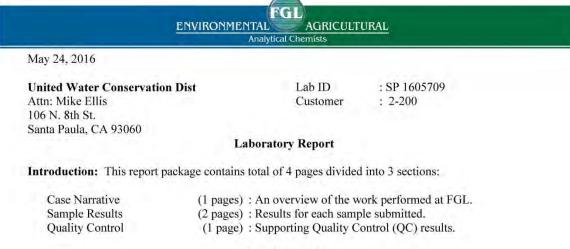
Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605711-002 Customer ID : 2-200

Sampled On	: May 18, 2016-15:46
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
constituent	result		omo	meditib	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	-		1	
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/20/16:206891
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/20/16:206891

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
			CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 TEL: (209)942-0182 TEL. (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suitle D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5818 TEL: (57)783-2940



ENVIRONMENTAL AGRICULTURAL Analytical Chemists

Quality Control - Inorganic											
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note			
Metals Iron	200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	103 % 103 % 0.7%	75-125 75-125 ⊲20.0				
	200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	98.2 % 0.00003 100 % -0.0002	90-110 0.03 90-110 0.03				
Manganese	200.7	(SP 1605711-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	107 % 105 % 2.7%	75-125 75-125 ≤20.0				
	200.7	05/20/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	97.3 % 0.00003 99.6 % 0.0002	90-110 0.01 90-110 0.01				
Definition CCV CCB MS MSD MSRPD DQO	Continuing Calibration Verifi Continuing Calibration Blank Matrix Spikes - A random san matrix affects analyte recovery. Matrix Spike Duplicate of MS are an indication of how that sa MS/MSD Relative Percent Di and analysis. Data Ouality Objective - This	 Analyzed to verify the ple is spiked with a kno /MSD pair - A random s mple matrix affects anal frence (RPD) - The MS 	instrument b wn amount c ample duplic yte recovery. S relative per	aseline is wit f analyte. Th ate is spiked cent differen	thin criteria. e recoveries with a know ce is an indi	are an indicati vn amount of a cation of precis	nalyted. The	recoverie			

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Column 4 LayneOx After Pilot	05/19/2016	05/19/2016	SP 1605709-001	DW
Column 4 LayneOx After Pilot	05/19/2016	05/19/2016	SP 1605709-002	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/19/2016:206891 All analysis quality controls are within established criteria	
	05/19/2016:205849 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

100

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605709-001 Customer ID : 2-200

Sampled On	: May 19, 2016-03:02
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	e Analysis Date/ID	
Metals, Total ^{P:15}	1.00	12.24	1.		1	- 9	2000		
Iron	ND	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891	
Manganese	ND	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891	

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605709-002 Customer ID : 2-200

Sampled On	: May 19, 2016-07:04
Sampled By	: Ruth Haldeman / Norm
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

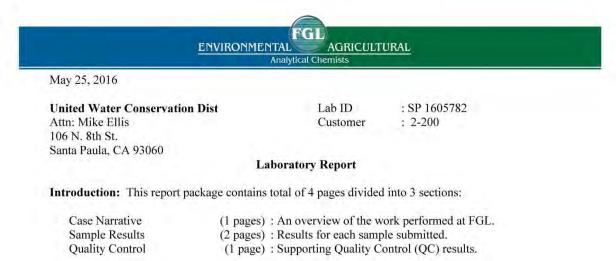
Sample Result - Inorganic

Constituent	Result	POL	Units	Units MCL/AL		Preparation	Sample Analysis	
Constituent	Result	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}	1.1		1.176			- C C.		
Iron	30	30	ug/L	300 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Manganese	10	10	ug/L	50 ²	200.7	05/19/16:205849	200.7	05/19/16:206891
Silica	27	1	mg/L	1.1.1.1.1.1	200.7	05/19/16:205849	200.7	05/19/16:206891

			Page 3 of 4
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95226 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (259)942-0182 TEL: (530)343-5818 TEL: (57)783-2940

ENVIRONMENTAL Analytical Chemists

May 24, 2016	
United Water Conservation	Dist


Lab ID Customer : SP 1605709 : 2-200

Constituent	Method	Date/ID	Туре	Type Units	Conc.	QC Data	DQO	Note
Metals fron	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	98.3 % 98.1 % 0.2%	75-125 75-125 ≤20.0	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	96.0 % 0.00005 98.2 % 0.00003	$\frac{9}{4}$ 75-125 $\frac{9}{6}$ $\frac{20.0}{75-125}$ $\frac{9}{6}$ $\frac{90.110}{900}$ 005 0.03 $\frac{9}{70}$ $75-125$ $\frac{9}{75-125}$	
Manganese	200.7	(SP 1605706-001)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	98.3 % 96.2 % 2.1%	75-125	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	99.0 % 0.00009 97.3 % 0.00003	0.01 90-110	
Silicon	200.7	(SP 1605706-001)	MS MSD MSRPD	mg/L mg/L mg/L	2.400 2.400 800.0	67.4 % 63.0 % 0.7%	<1/4	
	200.7	05/19/16:206891AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.6 % 0.07 95.6 % 0.07	1 90-110	
Definition CCV CCB	Continuing Calibration Veri Continuing Calibration Blar	k - Analyzed to verify the	instrument b	aseline is wi	thin criteria.		or of how th	at cample
MS	matrix affects analyte recover	y.						
MSD	: Matrix Spike Duplicate of N are an indication of how that	sample matrix affects anal	yte recovery.					
MSRPD	: MS/MSD Relative Percent I and analysis.	Difference (RPD) - The M	S relative per	cent differen	ce is an indi	cation of precis	ion for the p	reparation
<¼ DQO	: High Sample Background - : Data Quality Objective - Th							

Quality Control - Inorganic

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Column 4 LayneOx After Pilot	05/19/2016	05/20/2016	SP 1605782-001	DW	
Column 4 LayneOx After Pilot	05/20/2016	05/20/2016	SP 1605782-002	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	05/23/2016:207249 All analysis quality controls are within established criteria	
	05/23/2016:206004 All preparation quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

d by Kelly A. Dunnahoo, B.

100

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605782-001 Customer ID : 2-200

: May 19, 2016-15:58
: R.M./N.S.
: May 20, 2016-13:26
: Drinking Water

Sample Result - Inorganic

Constituent	Result	POL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
conomicon	result		ome	meditis	Method	Date/ID	Method	Date/1D
Metals, Total ^{P:15}	- 1. The second	12.2	1.	1.7.51	1			Sec. 2
Iron	ND	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	ND	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

				Page 2 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Column 4 LayneOx After Pilot Project : Pilot Study-Column 4 LayneOx Lab ID : SP 1605782-002 Customer ID : 2-200

Sampled On	: May 20, 2016-08:05
Sampled By	: R.M./N.S.
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

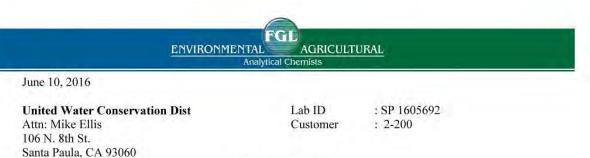
Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}	-		1.11	1.7.21	1	- 6	1	
Iron	100	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	90	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249

				Page 3 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

ENVIRONMENTAL Analytical Chemists

lay 25, 2016	
	Conservation Dist


Lab ID Customer : SP 1605782 : 2-200

Quality	Control -	Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	105 % 103 % 1.7%	75-125 75-125 ≤20.0	
	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.3 % -0.0006 99.6 % -0.0003	90-110 0.03 90-110 0.03	
Manganese	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	103 % 103 % 0.6%	75-125 75-125 ≤20.0	
2	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	94.1 % -0.00001 96.5 % 0.00004	90-110 0.01 90-110 0.01	
Definition CCV CCB MS MSD	Continuing Calibration Verit Continuing Calibration Blan Matrix Spikes - A random as matrix affects analyte recover Matrix Spike Duplicate of M are an indication of how that s MS/MSD Relative Percent D	 Analyzed to verify the mple is spiked with a kno S/MSD pair - A random s ample matrix affects anal 	instrument b wn amount o ample duplic yte recovery.	nent calibrat aseline is wi f analyte. Th ate is spiked	thin criteria. te recoveries with a know	are an indicati	nalyted. The	recoverie
MSRPD DQO	and analysis.						ion for the p	reparation

				Page 4 of 4
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalía, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

Laboratory Report

Introduction: This report package contains total of 6 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(3 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Backwash Water	05/18/2016	05/18/2016	SP 1605692-001	DW	
Backwash Water	05/18/2016	05/18/2016	SP 1605692-002	DW	
Backwash Water	05/18/2016	05/18/2016	SP 1605692-003	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.1	05/24/2016:206062 All preparation quality controls are within established criteria	
200.7	05/24/2016:207318 All analysis quality controls are within established criteria	
	05/26/2016:207414 All analysis quality controls are within established criteria	

Inorganic - Wet Chemistry QC

2540D	05/23/2016:206003 All preparation quality controls are within established criteria	
EPA 160	05/20/2016:205929 All preparation quality controls are within established criteria	

				rage 1 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No

June 10, 2016 United Water Conservation Dist Lab ID : SP 1605692 Customer : 2-200

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Republy denoting Redy A. Commun., In F. Ren & Americany Efforcies Americany Concerns

Page 2 of 6

June 10, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water Project : Pilot Study-Backwash Water Lab ID : SP 1605692-001 Customer ID : 2-200

Sampled On	: May 18, 2016-09:45
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:53
Matrix	: Drinking Water

Sample	Result -	Inorganic
--------	----------	-----------

Constituent	Result POL	POL	OL Units	MCL/AL	Sample Preparation		Sample Analysis	
and the state of t					Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}	1.00	2.7.1	12.7	1			1000	
Iron	2170	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	5830	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318
Wet Chemistry ^{P:1}	1.1.1.1		I TYTE					
Solids, Settleable	ND	0.1	ml/L		2540F	05/19/16:205880	2540F	05/19/16:207061
Solids, Total	1200	40	mg/L		EPA 160	05/20/16:205929	2540B	05/23/16:207211
Solids, Total Suspended (TSS)	42	3*	mg/L	· · · · ·	2540D	05/23/16:206003	2540D	05/24/16:207265

				Page 3 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalía, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573			CA ELAP Certification No. 2775	CA ELAP Certification No. 281

Deen A of 6

June 10, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water Project : Pilot Study-Backwash Water Lab ID : SP 1605692-002 Customer ID : 2-200

Sampled On	: May 18, 2016-09:47
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:53
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result POL	Units	MCL/AL	Sample Preparation		Sample Analysis		
Constituent	Kesun	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}			1.1.1	1				
Iron	44000	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	24400	50*	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/26/16:207414
Wet Chemistry ^{P:1}			1				· · · · · · · · · · · · · · · · · · ·	
Solids, Settleable	18.9	0.1	ml/L		2540F	05/19/16:205880	2540F	05/19/16:207061
Solids, Total	1540	40	mg/L		EPA 160	05/20/16:205929	2540B	05/23/16:207211
Solids, Total Suspended (TSS)	410	40*	mg/L	·····	2540D	05/23/16:206003	2540D	05/24/16:207265

				Fage 4 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	

June 10, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water Project : Pilot Study-Backwash Water Lab ID : SP 1605692-003 Customer ID : 2-200

Sampled On	: May 18, 2016-09:49
Sampled By	: Ruth Haldeman
Received On	: May 18, 2016-15:53
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result POI	POL	PQL Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	Result	TQL			Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}	1.0.0		1.1.1.1			- C		
Iron	58500	150*	ug/L	300 ²	200.1	05/24/16:206062	200.7	05/26/16:207414
Manganese	16800	50*	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/26/16:207414
Wet Chemistry ^{P:1}			1					
Solids, Settleable	36.8	0.1	ml/L		2540F	05/19/16:205880	2540F	05/19/16:207061
Solids, Total	1340	40	mg/L		EPA 160	05/20/16:205929	2540B	05/23/16:207211
Solids, Total Suspended (TSS)	319	29*	mg/L	·	2540D	05/23/16:206003	2540D	05/24/16:207265

				Page 5 01 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalía, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573			CA ELAP Certification No. 2775	CA ELAP Certification No. 281

ENVIRONMENTAL Analytical Chemists

June 10, 2016 United Water Conservation Dist					er	: SP 160 : 2-200	5692	
		Quality Contr	ol - Ino	rganic				
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.1	05/24/16:206062AMB (SP 1605692-001)	LCS MS MSD	mg/L mg/L mg/L mg/L	4.000 4.000 4.000	ND 98.6 % 112 % 97.5 %	<0.03 85-115 75-125 75-125	
Manganese	-200.1	05/24/16:206062AMB (SP 1605692-001)	MSRPD Blank LCS MS MSD MSD MSRPD	mg/L mg/L mg/L mg/L mg/L mg/L	0.8000 0.8000 0.8000 0.8000 0.8000	9.1% ND 98.5 % 166 % 102 % 7.4%	≤20 <0.01 85-115 <¼ 75-125 ≤20.0	
Iron	200.7	05/24/16:207318AC	CCV CCB CCV CCB	ppm ppm ppm ppm ppm	5.000 5.000	103 % 0.0069 98.5 % 0.0041	90-110 0.03 90-110 0.03	
	200.7	05/26/16;207414AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	100 % 0.0019 102 % 0.0049	90-110 0.03 90-110 0.03	_
Manganese	200.7	05/24/16:207318AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000	101 % 0.00002 102 % 0.0003	90-110 0.01 90-110 0.01	
	200.7	05/26/16:207414AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	102 % 0.00003 103 % 0.00002	90-110 0.01 90-110 0.01	
Wet Chem Solids, Suspended	2540D	05/23/16:206003JBA (SP 1605738-001)	Blank LCS LCS Dup	mg/L mg/L mg/L mg/L	50,05 50.05	ND 92.9 % 93.9 % 2.8%	<1 38-138 38-138 28.7	
Solids, Total	EPA 160	05/20/16:205929CTL (SP 1605461-001)	Blank LCS LCS Dup	mg/L mg/L mg/L mg/L	1000 1000	ND 100 % 97.3 % 0.6%	<40 90-110 90-110 10.0	
CCB Blank LCS MSD MSD MSD MSRPD ND	Continuing Calibration Verifi Continuing Calibration Blank Method Blank - Prepared to v Laboratory Control Standard/ Matrix Spikes - A random san natrix affects analyte recovery Matrix Spike Duplicate of M re an indication of how that sa Duplicate Sample - A random ndication of precision for the MS/MSD Relative Percent D and analysis. Non-detect - Result was below High Sample Background - S	- Analyzed to verify the i erify that the preparation of Sample - Prepared to verif nple is spiked with a know S/MSD pair - A random sa ample matrix affects analy sample with each batch is preparation and analysis. (fference (RPD) - The MS w the DQO listed for the a	nstrument b process is no y that the pro- manount o imple duplic te recovery. s prepared a relative per nalyte.	aseline is wit of contributin reparation pro- f analyte. The ate is spiked nd analyzed i cent difference	hin criteria. g contamina ocess is not a e recoveries with a know in duplicate. ce is an indic	tion to the sam, affecting analyt are an indicatic /n amount of ar The relative pe cation of precis	e recovery. on of how tha aalyted. The p creent differe	recoverie: nce is an

				Page 6 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

June 7, 2016

United Water Conservation Dist Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Lab ID : SP 1605785 Customer

: 2-200

Laboratory Report

Introduction: This report package contains total of 13 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(9 pages) : Results for each sample submitted.
Quality Control	(2 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Backwash Water BW0	05/19/2016	05/20/2016	SP 1605785-001	DW
Backwash Water BW2.5	05/19/2016	05/20/2016	SP 1605785-002	DW
Backwash Water BW5	05/19/2016	05/20/2016	SP 1605785-003	DW
Backwash Water BW7.5	05/19/2016	05/20/2016	SP 1605785-004	DW
Backwash Water BW10	05/19/2016	05/20/2016	SP 1605785-005	DW
Backwash Water BW12.5	05/19/2016	05/20/2016	SP 1605785-006	DW
Backwash Water BW15	05/19/2016	05/20/2016	SP 1605785-007	DW
Backwash Water BW17.5	05/19/2016	05/20/2016	SP 1605785-008	DW
Backwash Water BW20	05/19/2016	05/20/2016	SP 1605785-009	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.1	05/24/2016:206062 All preparation quality controls are within established criteria	
200.7	05/23/2016:207249 All analysis quality controls are within established criteria	
	05/24/2016:207318 All analysis quality controls are within established criteria	
	05/26/2016:207414 All analysis quality controls are within established criteria	

				Page 1 of 13
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

June 7, 2016 United Water Conservation Dist		Lab ID : SP 1605785 Customer : 2-200		
	Inor	ganic - Metals QC		
200.7	05/23/2016:206004 All preparation c	uality controls are within es	tablished criteria	
	Inorgan	c - Wet Chemistry QC	2	
2540D	40D 05/25/2016:206100 All preparation quality controls are within established criteria			
EPA 160	PA 160 05/24/2016:206086 All preparation quality controls are within established criteria			

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Digitally signate by Kally A. Diannihow, J. Tulty: Laboratory Director

Page 2 of 13

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW0 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-001 Customer ID : 2-200

May 19, 2016-13:00
Ruth Haldeman
May 20, 2016-13:26
Drinking Water

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation		Sample Analysis	
constituent				MCL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}	1000		1.1.1	1	-		1	
Iron	81200	150*	ug/L	300 ²	200.1	05/24/16:206062	200.7	05/26/16:207414
Manganese	18900	50*	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/26/16:207414
Wet Chemistry ^{P:1}			1				1	
Solids, Settleable	105	0.1	ml/L		2540F	05/20/16:205988	2540F	05/20/16:207183
Solids, Total	1350	40	mg/L		EPA 160	05/24/16:206086	2540B	05/26/16:207321
Solids, Total Suspended (TSS)	340	40*	mg/L		2540D	05/25/16:206100	2540D	05/26/16:207437

Sample Result - Inorganic

			Page 3 of 13
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)343-5618 TEL: (350)343-5618 TEL: (350)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW2.5 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-002 Customer ID : 2-200

Sampled On	: May 19, 2016-13:02
Sampled By	: Ruth Haldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Preparation Sample Analysis MCL/AL PQL Constituent Result Units Method Date/ID Method Date/ID Metals, Total^{P:15} 34700 300² 05/24/16:206062 05/24/16:207318 30 200.1 200.7 ug/L Iron 10 50² 05/24/16:206062 05/24/16:207318 Manganese 9750 ug/L 200.1 200.7 Wet Chemistry^{P:} Solids, Settleable 36.8 0.1 ml/L 2540F 05/20/16:205988 2540F 05/20/16:207183 Solids, Total mg/L EPA 160 2540B 05/26/16:207321 1300 40 05/24/16:206086 Solids, Total Suspended (TSS) 20* 2540D 05/26/16:207437 160 05/25/16:206100 2540D mg/L

Sample Result - Inorganic

				Page 4 of 13
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW5 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-003 Customer ID : 2-200

: May 19, 2016-13:05
: Ruth Haldeman
: May 20, 2016-13:26
: Drinking Water

Sample Result - Inorganic

Constituent	Result POL	POL	DL Units	MCL/AL	Sample Preparation		Sample Analysis	
constituent	Result	TQL		MCLARE	Method	Date/ID	Method	Date/1D
Metals, Total ^{P:1'5}	20.0	2.21	1. T	1			1000	
Iron	5560	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	2350	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318
Wet Chemistry ^{P:1}	1.2.2		1	1			1.	
Solids, Settleable	ND	0.1	ml/L		2540F	05/20/16:205988	2540F	05/20/16:207183
Solids, Total	1210	40	mg/L		EPA 160	05/24/16:206086	2540B	05/26/16:207321
Solids, Total Suspended (TSS)	24	3*	mg/L	· · · · ·	2540D	05/25/16:206100	2540D	05/26/16:207437

				Page 5 of 13
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573			CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW7.5 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-004 Customer ID : 2-200

Sampled On	: May 19, 2016-13:07
Sampled By	: Ruth Haldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Preparation Sample Analysis MCL/AL PQL Constituent Result Units Method Date/ID Method Date/ID Metals, Total P:15 1420 300² 05/23/16:206004 05/23/16:207249 30 200.7 200.7 ug/L Iron 10 50² 05/23/16:206004 05/23/16:207249 Manganese 410 ug/L 200.7 200.7 Wet Chemistry^{P:} Solids, Settleable ND 0.1 ml/L 2540F 05/20/16:205988 2540F 05/20/16:207183 Solids, Total mg/L EPA 160 05/24/16:206086 2540B 05/26/16:207321 1190 40 05/26/16:207437 2540D 05/25/16:206100 2540D Solids, Total Suspended (TSS) 5 1 mg/L

Sample Result - Inorganic

				Page 6 of 13
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW10 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-005 Customer ID : 2-200

Sampled On	: May 19, 2016-13:10
Sampled By	: Ruth Haldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result PO	POL	POL Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	Kesun	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}		2.2.1	12 T -	1.2.2.1			1	Care and
Iron	420	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	180	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Wet Chemistry ^{P:1}	7.1.7		in the second				1.	
Solids, Settleable	ND	0.1	ml/L		2540F	05/20/16:205988	2540F	05/20/16:207183
Solids, Total	1180	40	mg/L		EPA 160	05/24/16:206086	2540B	05/26/16:207321
Solids, Total Suspended (TSS)	3	1	mg/L	1	2540D	05/25/16:206100	2540D	05/26/16:207437

				Page 7 of 13
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW12.5 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-006 Customer ID : 2-200

: May 19, 2016-13:12
: Ruth Haldeman
: May 20, 2016-13:26
: Drinking Water

Constituent	Result	POL	Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	Result	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5} Iron Manganese	270 140	30 10	ug/L ug/L	$\frac{300^2}{50^2}$	200.7 200.7	05/23/16:206004 05/23/16:206004	200.7 200.7	05/23/16:207249 05/23/16:207249
Wet Chemistry ^{P:1} Solids, Settleable Solids, Total Solids, Total Suspended (TSS)	ND 1170 2	0.1 40 1	ml/L mg/L mg/L		2540F EPA 160 2540D	05/21/16:205990 05/24/16:206086 05/25/16:206100	2540F 2540B 2540D	05/21/16:207188 05/26/16:207321 05/26/16:207437

Sample Result - Inorganic

			Page 8 of 13
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (530)343-5818 TEL: (357)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW15 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-007 Customer ID : 2-200

Sampled On	: May 19, 2016-13:15
Sampled By	: Ruth Haldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Constituent	Result P	POL	Units	MCL/AL	Sample Preparation		Sample Analysis	
					Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}		2.7.1	11. T	1	1	- C	10.00	Carlo State
Iron	190	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	120	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Wet Chemistry ^{P:1}			1					
Solids, Settleable	ND	0.1	ml/L		2540F	05/21/16:205990	2540F	05/21/16:207188
Solids, Total	1160	40	mg/L		EPA 160	05/24/16:206086	2540B	05/26/16:207321
Solids, Total Suspended (TSS)	2	1	mg/L	· · · · ·	2540D	05/25/16:206100	2540D	05/26/16:207437

Sample Result - Inorganic

			Page 9 of 13
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenué 3442 Empresa Drivé, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (250)942-0182 TEL: (530)343-5618 TEL: (505)783-2940

Solids, Total

Solids, Total Suspended (TSS)

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW17.5 : Pilot Study-Backwash Water Project

1170

2

: SP 1605785-008 Lab ID Customer ID : 2-200

Sampled On	: May 19, 2016-13:17
Sampled By	: Ruth Haldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

05/24/16:206086

05/25/16:206100

2540B

2540D

05/26/16:207321

05/26/16:207437

EPA 160

2540D

Constituent Result POL	OL Units M	MCL/AL	Sample Preparation		Sample Analysis			
Constituent	Kesun			Method	Date/ID	Method	Date/ID	
Metals, Total ^{P:15}	10000	7.71	12	1	-	- C	10000	100.000
Iron	250	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	160	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Wet Chemistry ^{P:1} Solids, Settleable	ND	0.1	ml/L		2540F	05/21/16:205990	2540F	05/21/16:207188

Sample Result - Inorganic

mg/L ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 \$Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

mg/L

40

1

			Page 10 of 13
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	Office & Laboratory Office & Laboratory Office & Laboratory 2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (209)42-0182 TEL: (530)343-5818 TEL: (530)783-2940

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Backwash Water BW20 Project : Pilot Study-Backwash Water Lab ID : SP 1605785-009 Customer ID : 2-200

Sampled On	: May 19, 2016-13:20
Sampled By	: Ruth Haldeman
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water
	the second s

Sample Result - Inorganic

Constituent	Result	POL	POL Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent	Kesun	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:1'5}		2.2.1	12 T -	1.2.2.1			1	1 The
Iron	160	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	130	10	ug/L	50 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Wet Chemistry ^{P:1}			in the second				1.	
Solids, Settleable	ND	0.1	ml/L		2540F	05/21/16:205990	2540F	05/21/16:207188
Solids, Total	1180	40	mg/L		EPA 160	05/24/16:206086	2540B	05/26/16:207321
Solids, Total Suspended (TSS)	2	1	mg/L	1	2540D	05/25/16:206100	2540D	05/26/16:207437

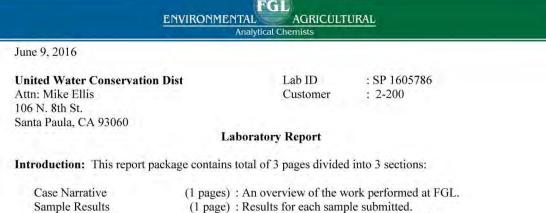
				Page 11 of 13
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalía, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	

FGL ENVIRONMENTAL AGRICULTURAL Analytical Chemists

June 7, 2016 United Water Cons	servation Dis	t		Lab ID Custom	er	: SP 160: : 2-200	5785	
Quality Control - Inorganic								
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals Iron	200.1	05/24/16:206062AMB (SP 1605692-001)	Blank LCS MS MSD MSRPD	mg/L mg/L mg/L mg/L mg/L	4.000 4.000 4.000 0.8000	ND 98.6 % 112 % 97.5 % 9.1%	<0.03 85-115 75-125 75-125 ≤20	
Manganese	200.1	05/24/16:206062AMB (SP 1605692-001)	Blank LCS MS MSD MSD MSRPD	mg/L mg/L mg/L mg/L mg/L	0.8000 0.8000 0.8000 0.8000 0.8000	ND 98.5 % 166 % 102 % 7.4%	<0.01 85-115 <1/4 75-125 ≤20.0	
Iron	200.7	(SP 1605780-002) (SP 1605785-006)	MS MSD MSRPD MS MSD	ug/L ug/L ug/L ug/L ug/L	4000 4000 800.0 4000 4000	105 % 103 % 1.7% 108 % 104 %	75-125 75-125 ≤20.0 75-125 75-125	
200	200.7	05/23/16:207249AC	MSRPD CCV CCB CCV CCB CCV CCB	ug/L ppm ppm ppm ppm ppm ppm	800.0 5.000 5.000 5.000	3.0% 97.3 % -0.0006 99.6 % -0.0003 102 % -0.0003	≤20.0 90-110 0.03 90-110 0.03 90-110 0.03	
	200.7	05/24/16:207318AC	CCV CCB CCV CCB	ppm ppm ppm ppm ppm	5.000 5.000	98.5 % 0.0041 98.5 % 0.0008	90-110 0.03 90-110 0.03	
	200.7	05/26/16:207414AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	100 % 0.0019 102 % 0.0049	90-110 0.03 90-110 0.03	
200	200.7	(SP 1605780-002) (SP 1605785-006)	MS MSD MSRPD MS MSD	ug/L ug/L ug/L ug/L ug/L	800.0 800.0 800.0 800.0 800.0 800.0	103 % 103 % 0.6% 107 % 101 %	$75-125 \\ 75-125 \\ \leq 20.0 \\ 75-125 \\ 75-125 \\ 75-125 \\ (20.0) \\ 75-125 \\ (20.0) \\ ($	
	200.7	05/23/16:207249AC	MSRPD CCV CCB CCV CCB CCV CCB CCV	ug/L ppm ppm ppm ppm ppm ppm	800.0 1.000 1.000 1.000	5.0% 94.1 % -0.00001 96.5 % 0.00004 100 % -0.00002	≤20.0 90-110 0.01 90-110 0.01 90-110 0.01 90-110 0.01	
	200.7	05/24/16:207318AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	102 % 0.0003 102 % 0.0005	90-110 0.01 90-110 0.01	
	200.7	05/26/16:207414AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	102 % 0.00003 103 % 0.00002	90-110 0.01 90-110 0.01	
Wet Chem Solids, Suspended	2540D	05/25/16:206100jba (SP 1605791-001)	Blank LCS LCS Dup	mg/L mg/L mg/L mg/L	50.05 50.05	ND 81.9 % 82.9 % 2.5%	<1 38-138 38-138 28.7	

Page 12 of 13
 Corporate Offices & Laboratory
 Office & Laboratory
 9415 W. Goshen Avenue
 9416 W. Goshen Avenue<

June 7,	2016			
United	Water	Conservation	Dist	


Lab ID Customer : SP 1605785 : 2-200

Quality Control - Inorganic

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem Solids, Total EPA 160		05/24/16:206086CTL (SP 1605784-001)	Blank LCS LCS Dup	mg/L mg/L mg/L mg/L	1000 1000			11	
Definition CCV CCB Blank LCS MS MSD Dup MSRPD ND	Continuing Calibrat Method Blank - Pre Laboratory Control Matrix Spikes - Ar matrix affects analyte Matrix Spike Dupli are an indication of h Duplicate Sample - indication of precisio	ion Blank pared to ve Standard/S andom sam recovery rate of MS ow that san A random n for the pr	ation - Analyzed to verify the rify that the preparation ample - Prepared to veri ple is spiked with a know MSD puir - A random s nple matrix affects analy sample with each batch eparation and analysis. Ference (RPD) - The MS	instrument b process is no fy that the pr vn amount o ample duplic te recovery s prepared a	aseline is wit of contribution reparation pro- f analyte. The rate is spiked and analyzed (hin criteria. g contaminal ocess is not a e recoveries with a know in duplicate.	tion to the sam iffecting analyl are an indicati n amount of a The relative p	e recovery. on of how the nalyted. The ercent differe	recoverie nce is an

Page 13 of 13

Case Narrative	(1 pages) : An overview of the work performed at FGL
Sample Results	(1 page) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

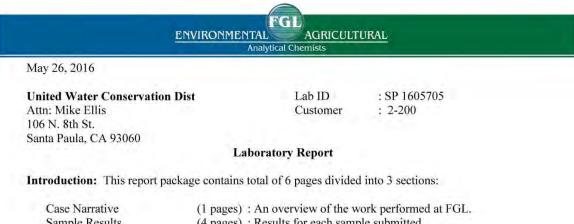
Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Backwash Water Composite	05/19/2016	05/20/2016	SP 1605786-001	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC				
200.1	05/24/2016:206062 All preparation quality controls are within established criteria			
200.7	05/24/2016:207318 All analysis quality controls are within established criteria			
200.8	06/07/2016:208040 All analysis quality controls are within established criteria			
	06/07/2016:206624 All preparation quality controls are within established criteria			

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.


KD:CEA

Approved By Kelly A. Dunnahoo, B.S.

Digitally signed by Kelly A. Dumashoo, B.S. Title: Laksmatory Director Date: 2016-06-09

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(4 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Settling Samples	05/18/2016	05/19/2016	SP 1605705-001	DW
Settling Samples	05/18/2016	05/19/2016	SP 1605705-002	DW
Settling Samples	05/18/2016	05/19/2016	SP 1605705-003	DW
Settling Samples	05/18/2016	05/19/2016	SP 1605705-004	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.1	05/24/2016:206062 All preparation quality controls are within established criteria	
200.7	05/24/2016:207318 All analysis quality controls are within established criteria	

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Digitally signed by Kelly A. Damashoo, B.S. Trile: Laboratory Director Date: 2016-05-26

May 26, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605705-001 Customer ID : 2-200

Sampled On	: May 18, 2016-10:00
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5} Iron	18000	30	ug/L	300 ²	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	9060	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318

				Page 2 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

2.00

May 26, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605705-002 Customer ID : 2-200

Sampled On	: May 18, 2016-13:00
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}		12.2	1.11	1.7.21	1	. 6	1.000	
Iron	2740	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	4830	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318

			Page 3 of 6
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
			CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95296 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (530)343-5818 TEL: (357)783-2940

1

May 26, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605705-003 Customer ID : 2-200

Sampled On	: May 18, 2016-15:00
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		1000	1.1.1.1.	1.7.31	1	. C. 193	1.000	1
Iron	1950	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	3630	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318

				Page 4 01 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 281

May 26, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

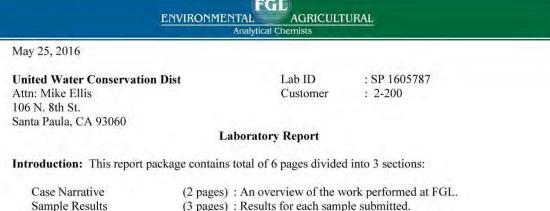
Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605705-004 Customer ID : 2-200

Sampled On	: May 18, 2016-17:00
Sampled By	: Ruth Haldeman
Received On	: May 19, 2016-10:19
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Preparation Method Date/ID		Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}		1000	1.11	1.7.21	1	. C. 13	1.000	1
Iron	1400	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	2920	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318

				Page 5 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810


ENVIRONMENTAL Analytical Chemists

May 26, 2016 United Water Conservation Dist				Lab ID Custom	er	: SP 1605705 : 2-200					
Quality Control - Inorganic											
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note			
Metals											
Iron	200.1	05/24/16:206062AMB	Blank LCS	mg/L mg/L	4.000	ND 98.6 %	<0.03 85-115				
		(SP 1605692-001)	MS MSD MSRPD	mg/L mg/L mg/L	4.000 4.000 0.8000	112 % 97.5 % 9.1%	75-125 75-125 ≤20				
Manganese	200.1	05/24/16:206062AMB	Blank LCS MS	mg/L mg/L	0.8000	ND 98.5 % 166 %	<0.01 85-115 < ¹ / ₄				
		(SP 1605692-001)	MSD MSRPD	mg/L mg/L mg/L	0.8000 0.8000 0.8000	100 % 102 % 7.4%	<54 75-125 ≤20,0				
Iron	200,7	05/24/16:207318AC	CCV CCB CCV CCB CCV CCB	ppm ppm ppm ppm ppm ppm	5.000 5.000 5.000	103 % 0.0069 98.5 % 0.0041 98.5 % 0.0008	90-110 0.03 90-110 0.03 90-110 0.03				
Manganese	200.7	05/24/16:207318AC	CCV CCB CCV CCB CCV CCB CCV CCB	ppm ppm ppm ppm ppm ppm ppm	1.000 1.000 1.000	101 % 0.00002 102 % 0.0003 102 % 0.0005	90-110 0.01 90-110 0.01 90-110 0.01				
CCB : C Blank : M LCS : LL MS : M MSD : M are MSRPD : M ND : N	ntinuing Calibration Verifi ntinuing Calibration Blank ethod Blank - Prepared to v uboratory Control Standard'/ atrix Spikes - A random san rix affects analyte recovery, atrix Spike Duplicate of MS an indication of how that sa S/MSD Relative Percent Di analysis. on-detect - Result was below gh Sample Background - Sp	 Analyzed to verify the in rify that the preparation p sample - Prepared to verify type is spiked with a know /MSD pair - A random sa mple matrix affects analyt ference (RPD) - The MS v the DQO listed for the and 	nstrument b process is no by that the p in amount of mple duplic relative per nalyte.	aseline is wit ot contributin reparation pro of analyte. Th cate is spiked cent difference	hin criteria. g contamina occss is not a e recoveries with a know ce is an indic	tion to the sam affecting analyt are an indication of armount of ar station of precis	e recovery. on of how the nalyted. The	recoverie			

				Page 6 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

155

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(3 pages) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix	
Settling Samples	05/19/2016	05/20/2016	SP 1605787-001	DW	
Settling Samples	05/20/2016	05/20/2016	SP 1605787-002	DW	
Settling Samples	05/20/2016	05/20/2016	SP 1605787-003	DW	

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC 200.1 05/24/2016:206062 All preparation quality controls are within established criteria 200.7 05/23/2016:207249 All analysis quality controls are within established criteria 05/24/2016:207318 All analysis quality controls are within established criteria 05/23/2016:206004 All preparation quality controls are within established criteria

				Page 1 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573			CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

May 25, 2016 United Water Conservation Dist Lab ID : SP 1605787 Customer : 2-200

Certification: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Digitally depict by Solidy A Commission B 4 Trans 1 depictory Director Data 2016 07:21

Page 2 of 6

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605787-001 Customer ID : 2-200

ampled On	: May 19, 2016-17:00
ampled By	: R.H./M.E.
eceived On	: May 20, 2016-13:26
latrix	: Drinking Water
eceived On	: May 20, 2016-13:20

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:15}			1.1.1.1.	1.2.21	· · · · · ·	a di san Ri	1.000	the state
Iron	2030	30	ug/L	300 ²	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	460	10	ug/L	50 ²	200,7	05/23/16:206004	200.7	05/23/16:207249

				Page 3 of 6
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573		CA ELAP Certification No. 2670		CA ELAP Certification No. 2810

0 1.00

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605787-002 Customer ID : 2-200

Sampled On	: May 20, 2016-13:00
Sampled By	: R.H./M.E.
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Result - Inorganic

Constituent Result		POL Units	MCL/AL	Sample Preparation		Sample Analysis		
constituent	Result	TQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
Metals, Total ^{P:15}			1.	1.2.2		- C M	1.000	10
Iron	920	30	ug/L	300^{2}	200.7	05/23/16:206004	200.7	05/23/16:207249
Manganese	260	10	ug/L	50 ²	200,7	05/23/16:206004	200.7	05/23/16:207249

			Page 4 of 6
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suitle D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (200)942-0182 TEL: (530)343-5518 TEL: (605)783-2940

5 . 61

May 25, 2016

United Water Conservation Dist

Attn: Mike Ellis 106 N. 8th St. Santa Paula, CA 93060

Description : Settling Samples Project : Pilot Study-Settling Samples Lab ID : SP 1605787-003 Customer ID : 2-200

Sampled On	: May 20, 2016-08:30
Sampled By	: R.H./M.E.
Received On	: May 20, 2016-13:26
Matrix	: Drinking Water

Sample Result - Inorganic

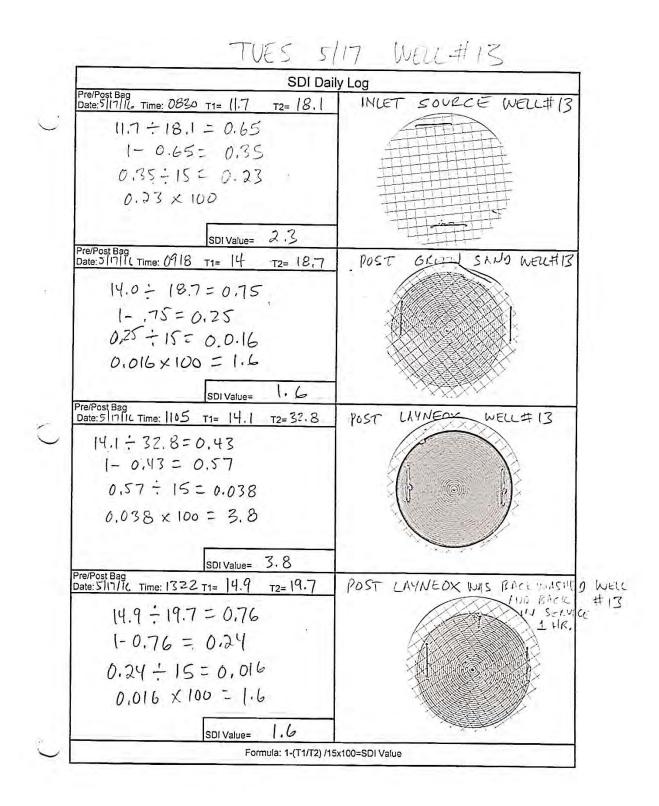
Constituent	Result	PQL	Units	MCL/AL	Sample Method	Preparation Date/ID	Samp Method	le Analysis Date/ID
Metals, Total ^{P:1'5}		1.1.1.1			1000		1.00	10.00
Iron	5510	30	ug/L	300^{2}	200.1	05/24/16:206062	200.7	05/24/16:207318
Manganese	2190	10	ug/L	50 ²	200.1	05/24/16:206062	200.7	05/24/16:207318

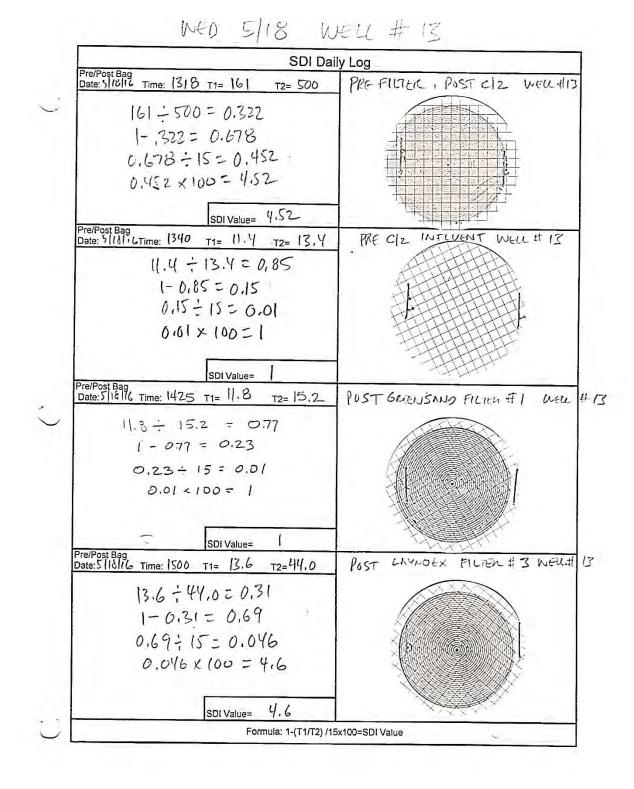
Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
	CA ELAP Certification No. 2670		CA ELAP Certification No. 2810
1000	2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423	2500 Stagecoach Road 563 E. Lindo Avenue Stockton, CA 95215 Chico, CA 95926 TEL: (209)942-0182 TEL: (530)343-5818 FAX: (209)942-0423 FAX: (530)343-3807	2500 Stagecoach Road 563 E. Lindo Avenue 3442 Empresa Drive, Suite D Stockton, CA 95215 Chico, CA 95926 San Luis Obispo, CA 93401 TEL: (209)942-0182 TEL: (530)343-5818 TEL: (605)783-2940

ENVIRONMENTAL Analytical Chemists

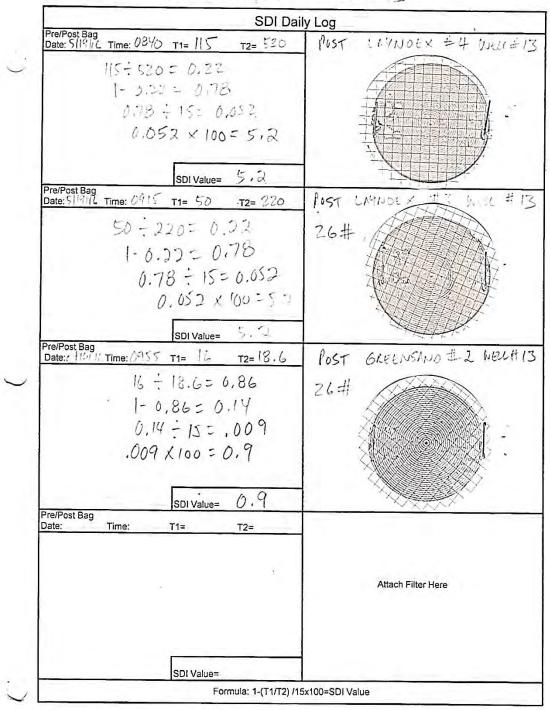
May 25, 2016 United Water Conservation Dist				Lab ID Customer		: SP 1605787 : 2-200		
		Quality Contr	ol - Ino	rganic				
Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals fron	200.1	05/24/16:206062AMB (CH 1673305-001)	Blank LCS MS MSD	mg/L mg/L mg/L mg/L	4.000 4.000 4.000	ND 104 % 85.4 % 81.3 %	<0.03 85-115 75-125 75-125	
Manganese	200.1	05/24/16:206062AMB (CH 1673305-001)	MSRPD Blank LCS MS MSD MSD MSRPD	mg/L mg/L mg/L mg/L mg/L mg/L	0.8000 0.8000 0.8000 0.8000 0.8000	1.8% ND 106 % 100 % 104 % 3.9%	≤20 <0.01 85-115 75-125 75-125 ≤20.0	Ē
iron	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	4000 4000 800.0	105 % 103 % 1.7%	75-125 75-125 <20.0	-
	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	97.3 % -0.0006 99.6 % -0.0003	90-110 0.03 90-110 0.03	
	200.7	05/24/16:207318AC	CCV CCB CCV CCB	ppm ppm ppm ppm	5.000 5.000	98.5 % 0.0008 98.6 % 0.0047	90-110 0.03 90-110 0.03	
Manganese 200.7 200.7 200.7	200.7	(SP 1605780-002)	MS MSD MSRPD	ug/L ug/L ug/L	800.0 800.0 800.0	103 % 103 % 0.6%	75-125 75-125 <20.0	
	200.7	05/23/16:207249AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	94.1 % -0.00001 96.5 % 0.00004	90-110 0.01 90-110 0.01	
	05/24/16:207318AC	CCV CCB CCV CCB	ppm ppm ppm ppm	1.000 1.000	102 % 0.0005 102 % 0.0005	90-110 0.01 90-110 0.01		
Definition CCV CCB Blank LCS MS MSD MSRPD	: Continuing Calibration Verifi : Continuing Calibration Blank : Method Blank - Prepared to v : Laboratory Control Standard/ : Matrix affects analyte recovery : Matrix Spikes - A random sar matrix affects analyte recovery : Matrix Spike Duplicate of MS are an indication of how that sa : MS/MSD Relative Percent Di and analysis.	- Analyzed to verify the i erify that the preparation r Sample - Prepared to verif mple is spiked with a know S/MSD pair - A random sa mple matrix affects analy ifference (RPD) - The MS	nstrument b process is no y that the p n amount c mple duplic te recovery. relative per	aseline is wit ot contributin reparation pro f analyte. Th ate is spiked	hin criteria. g contamina ocess is not a e recoveries with a know	tion to the sam ffecting analyt are an indication n amount of ar	e recovery. on of how the alyted. The i	recoverie
ND DQO	: Non-detect - Result was below : Data Quality Objective - This			ty control dat	a is compare	d		

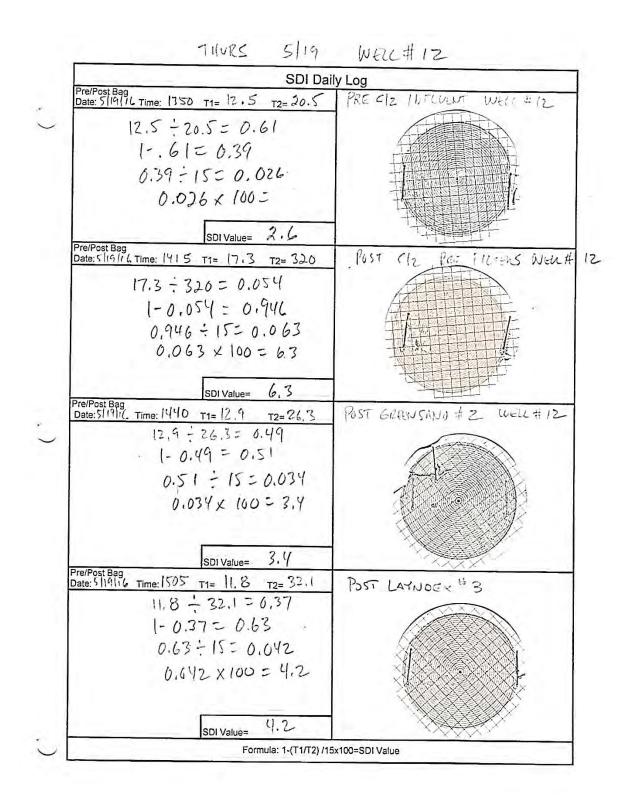
Corporate Offices & LaboratoryOffice & Laboratory9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95926San Luis Ohispo, CA 93401Visalia, CA 93291Visalia, CA 93291Visalia, CA 93291TEL: (805)733-2940TEL: (855)734-9473TEL: (805)735-2940TEL: (855)734-9473TEL: (805)735-2912FAX: (559)734-8435CA ELAP Certification No. 1573CA ELAP Certification No. 1563CA ELAP Certification No. 2870CA ELAP Certification No. 2870CA ELAP Certification No. 2870CA ELAP Certification No. 2870

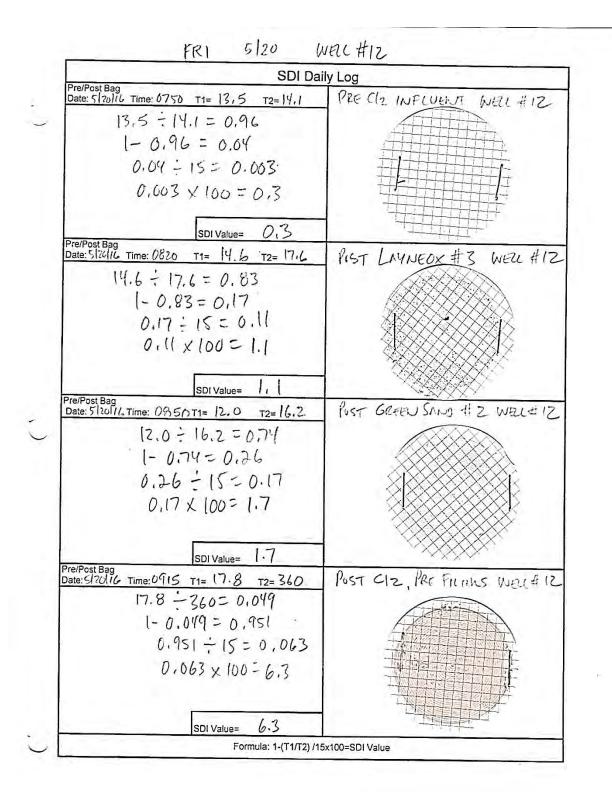

APPENDIX 7.8 – Silt Density Index (SDI) Test Data


Table 22 - Summary of SDI Test Values						
	Filter Feed	Raw Water)	Filter Effluent			
Date	Well No. 13	Well No. 12	Greensand Plus	LayneOx		
5/17/2016	2.3 – pre-chlorine		1.6	3.8 – initially 1.6 – backwashed		
5/18/2016	1.0 – pre-chlorine 4.52 – post-chlorine		1.0	4.6		
5/19/2016	Not recorded		0.9	5.2 (x2)		
5/19/2016		2.6 – pre-chlorine 6.3 – post-chlorine	3.4	4.2		
5/20/2016		0.3 – pre-chlorine 6.3 – post-chlorine	1.7	1.1		

Note: Merck Millipore "EZ-Pak" membrane filters used (47 mm dia, 0.45µm).


Figure 28 - Ruben Sanchez (UWCD) performs SDI testing




Page 66 of 70

1

74UR 5/19 WELL # 13

APPENDIX 7.9 – SWRCB Letter in Response to Proposition 1 Groundwater Grant Funding Pre-Application

State Water Resources Control Board

RECEIVED

JUL 2 3 2016

United Water Conservation District

JUL 2 0 2016 Mr. Robert Richardson United Water Conservation District 106 N. 8th Street Santa Paula, CA 93060

PROPOSITION 1 GROUNDWATER GRANT FUNDING PRE-APPLICATION; UNITED WATER CONSERVATION DISTRICT (DISTRICT); IRON AND MANGANESE DEEP WELL TREATMENT AT UWCD EL RIO FACILITY IN OXNARD (FAAST #34474)

Dear Mr. Richardson:

Thank you for submitting a pre-application on January 8, 2016, for the District's (FAAST #34474) project, for consideration of funding through the Groundwater Grant Program (GWGP). The <u>GWGP Funding Guidelines</u> were adopted by the State Water Resources Control Board (State Water Board) on May 18, 2016. We regret to inform you that your project does not qualify for GWGP funding. However, if you are still interested in State Water Board funding for your project, your project may qualify for funding through the Drinking Water State Revolving Fund (DWSRF) program.

Per the adopted <u>GWGP Funding Guidelines</u>, projects that treat groundwater for direct potable use, with no cleanup or remediation of the aquifer, are considered "drinking water treatment projects". Drinking water treatment projects generally address regional contamination that is not conducive to aquifer cleanup due to the extent of the contamination, ongoing discharge, or naturally elevated levels of the contaminant (e.g., regional nitrate plumes, hexavalent chromium, etc). Your project appears to be a drinking water treatment project.

Based on State Water Board staff's discussion with you over the phone, as well as in reviewing the Pre-application, your project would remove nitrate, iron, and manganese to serve potable drinking water to your customers, but would not clean up the aquifer. Your project meets the definition of "a drinking water treatment project". Only drinking water treatment projects that benefit a disadvantaged community or economically distressed area can qualify for GWGP funding. Your drinking water treatment project does not appear to benefit a disadvantaged community or economically distressed area can qualify for these funds.

To apply to the DWSRF Program, please use the Financial Assistance Application Submittal Tool (FAAST) and select the appropriate funding avenue (Planning or Construction) for your proposed project. For information on how and where to apply to the DWSRF Program, please see their webpage here:

http://www.waterboards.ca.gov/drinking water/services/funding/SRF.shtml.

FELICIA MARCUS, CHAIR | THOMAS HOWARD, EXECUTIVE DIRECTOR

1001 I Street, Sacramento, CA 95814 | Mailing Address: P.O. Box 100, Sacramento, CA 95812-0100 | www.waterboards.ca.gov

If you have any questions or for further information, please contact Erin Crandall at (916) 319-8263, or <u>Erin Crandall@waterboards.ca.gov</u> for Proposition 1 Groundwater Program information.

Sincerely,

peall.

Joe Karkoski, P.E., MPAA Chief, Bond Section Division of Financial Assistance