
Quagga Mussel Monitoring & Control Lake Piru, Piru Creek, Santa Clara River July 14, 2017

Purpose and Intent of Meeting

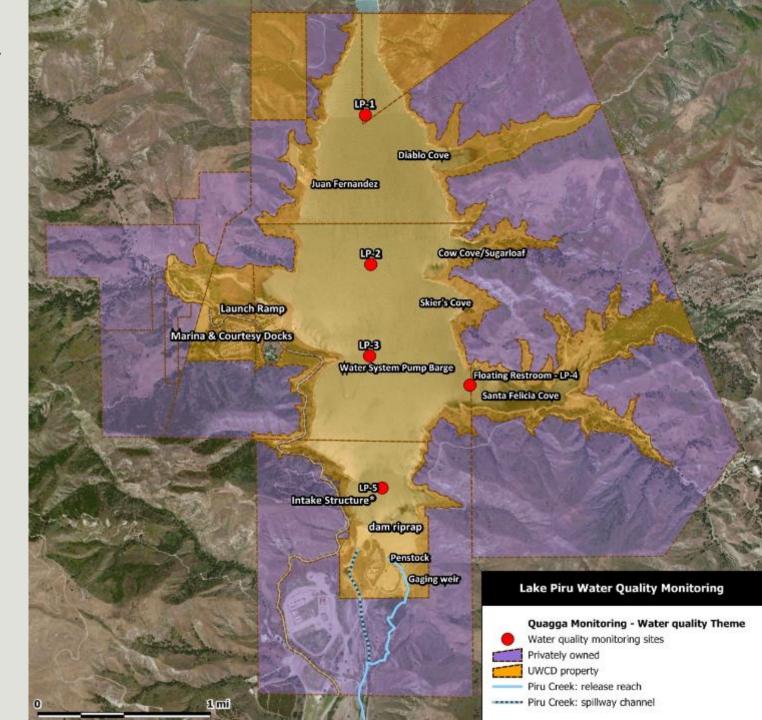
Provide an update on United's monitoring, containment, and control efforts and identify next steps and paths forward

United Water Conservation District

2. Monitoring and Infestation Delineation Update

Fish and Game Code §2301(d)(1)

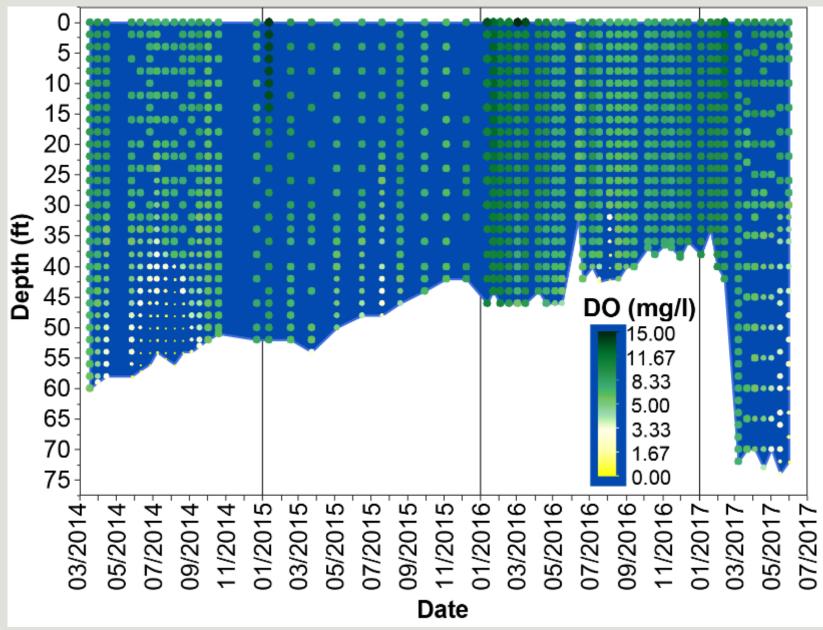
Requirement A – Methods for delineation of infestation, including both adult quagga mussels and veligers

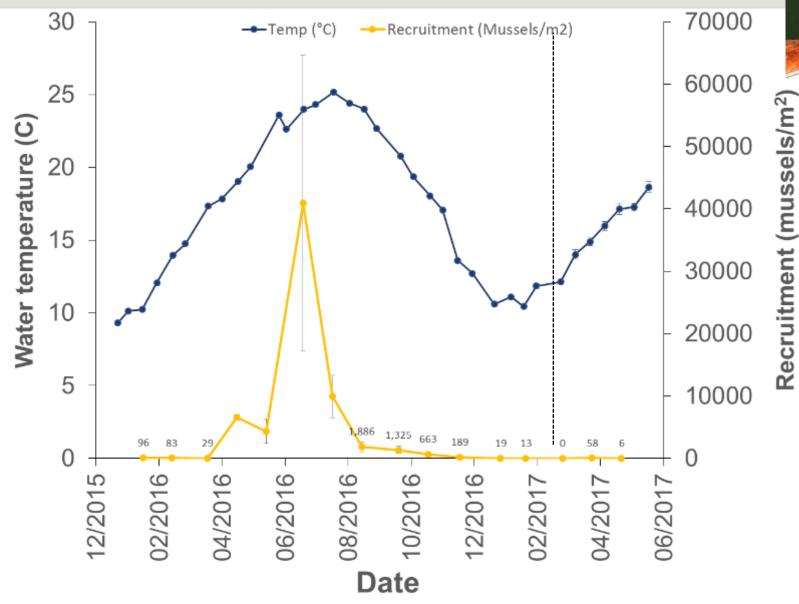

Requirement B – Methods for control or eradication of adult quagga mussels and decontamination of water containing larval mussels

Requirement C – A systematic monitoring program to determine any changes in conditions

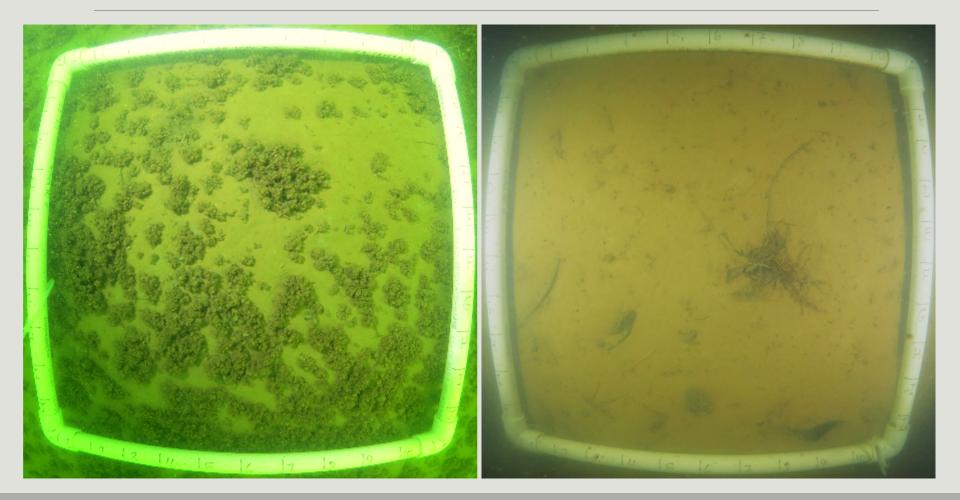

2. Monitoring and Infestation Delineation Update

- Water quality
- Mussel recruitment in Lake Piru and downstream
- Spread of mussels since infestation
- Observed veliger dispersal
- Downstream considerations
- What are these results telling us?

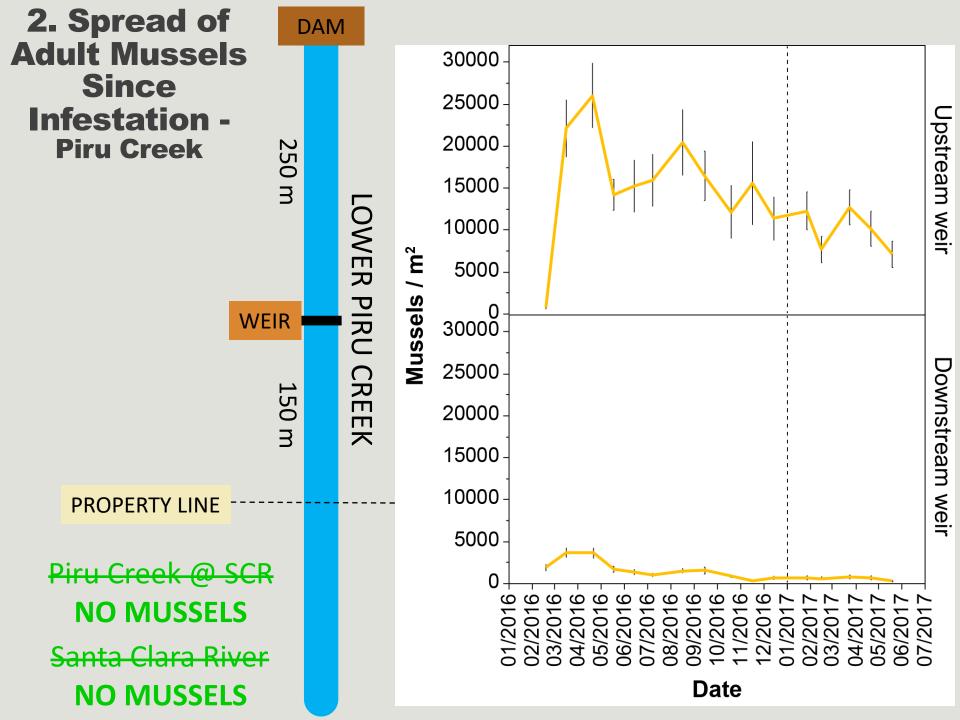

2. Water Quality


2. Water Quality

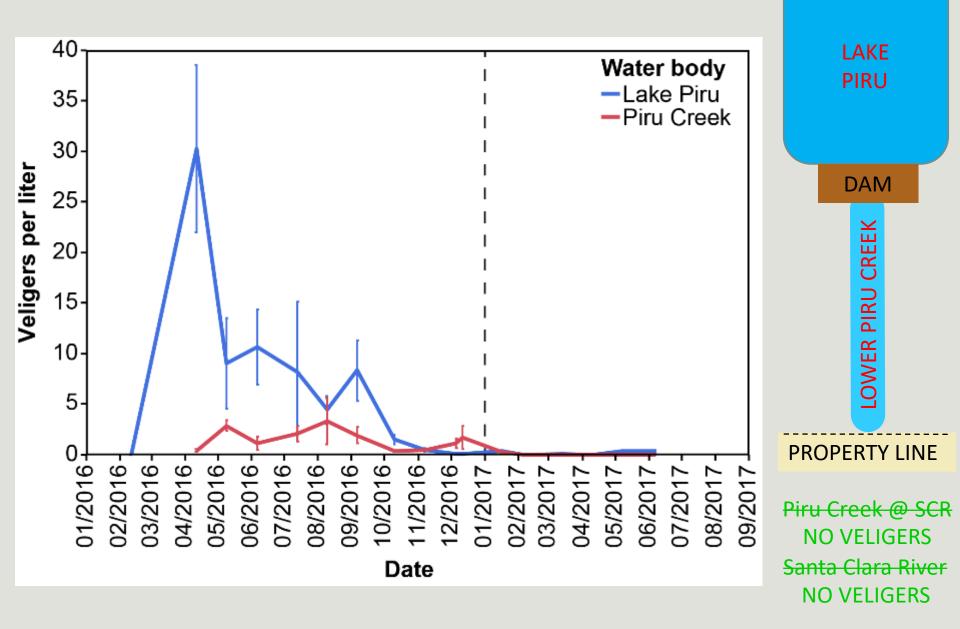
2. Water Quality



2. Mussel Recruitment in Lake Piru

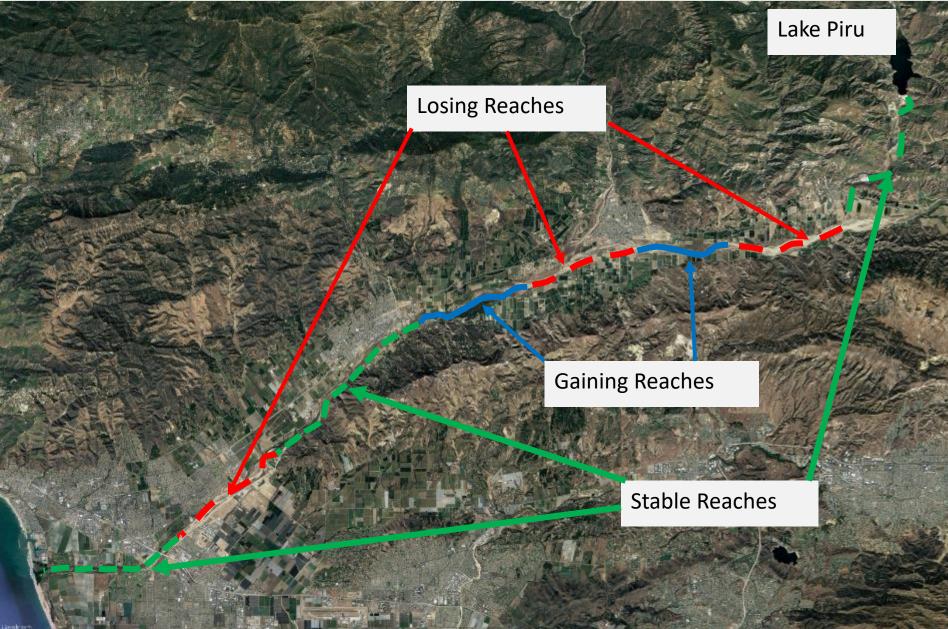


2. Mussel Recruitment in Lake Piru Reduction in mussel coverage on soft sediment

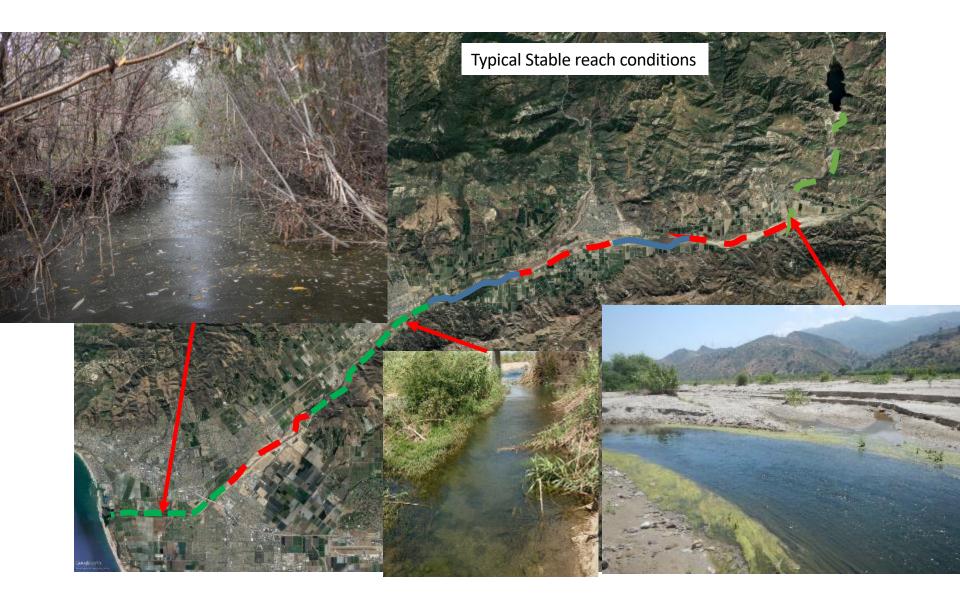


September 2016

March 2017


2. Observed Veliger Dispersal

2. Spread of Mussels since Infestation -Adult Quagga Mussel Surveys


2. Downstream Considerations – Santa Clara River Hydrology



2. Downstream Considerations-High Volume Releases

77 cfs release in December 2016

Release state water to Piru Basin only and test the recommissioned hydroelectric Turbine Unit 1

200 cfs release in January 2017

Migration release for southern California steelhead triggered under United's FERC license, Water Release Plan

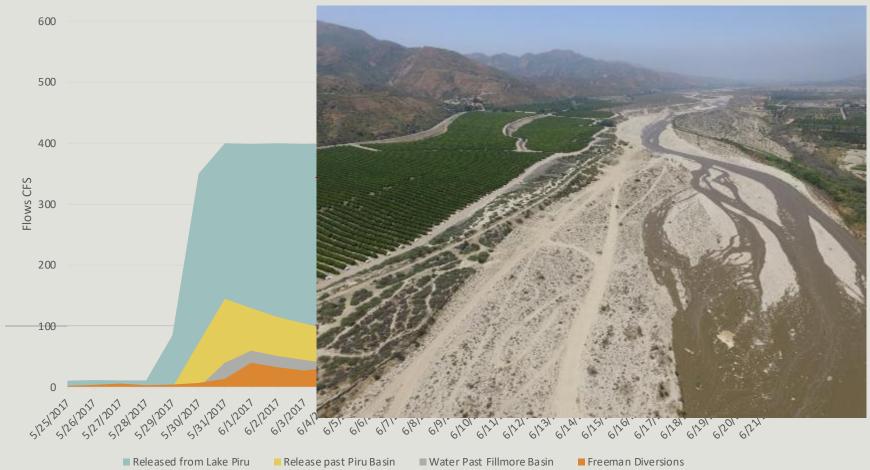
NOTE - NMFS **did not** concur that suspending migration releases in 2017 was not likely to adversely affect southern California steelhead

500 cfs release in June 2017

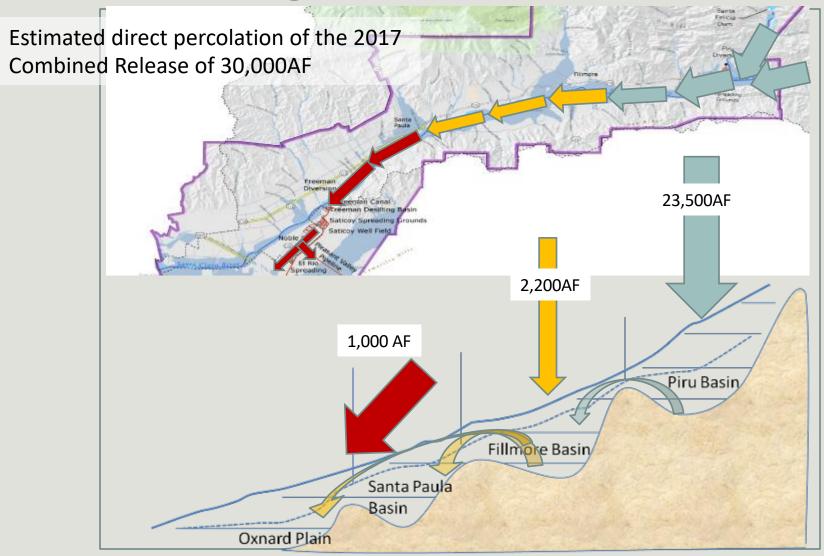
Release SWP Table A and Article 21 water to combat unsafe levels of nitrates in the Oxnard Forebay Groundwater Basin that provides drinking water supplies to the Oxnard Plain region (~250,000 population)

2. Downstream Considerations – High Volume Releases

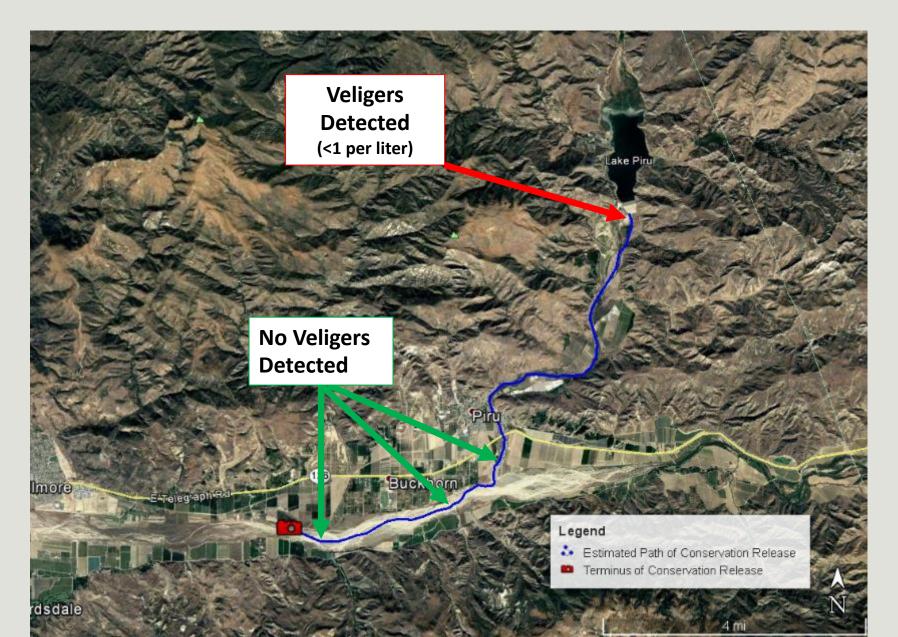
2017 Dual Release from Lake Piru and Castaic Lake

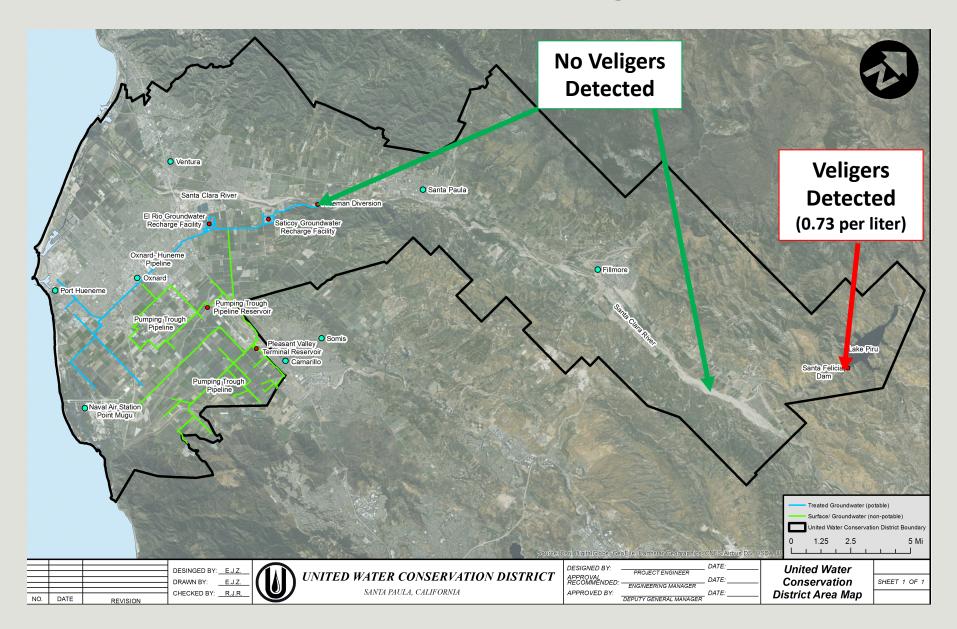

2. Downstream Considerations -**High Volume Releases**

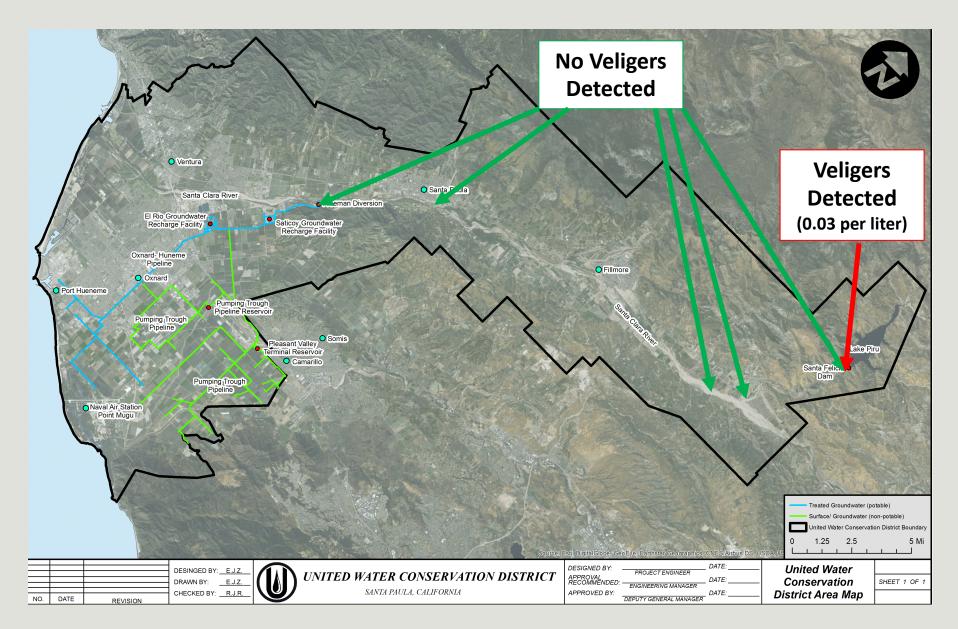
Released from Castaic and Piru



2. Downstream Considerations – High Volume Releases


Release from Piru


2. Downstream Considerations – High Volume Releases


2. Downstream Monitoring during High Volume Releases – 77 cfs Release in December 2016

2. Downstream Monitoring during High Volume Releases – 200 cfs Release in January 2017

2. Downstream Monitoring during High Volume Releases – 500 cfs Release in June 2017

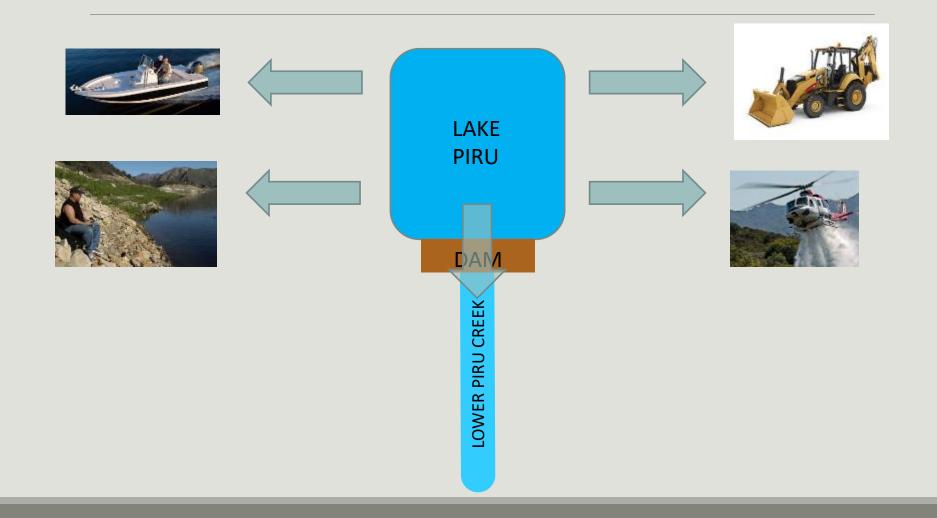
2. What are these results telling us?

- •The quagga mussel population exhibits source-sink dynamics consistent with the literature
- •Lake conditions have changed with the last rainy season and the easing of drought
- •Sediment smothered part of the population in 2017
- •Veligers are **not** surviving the passage through lower Piru Creek or they are below detection limits in the mainstem Santa Clara River even during three higher volume releases

Containment and Control Measures

Fish and Game Code §2301(d)(1)

 Requirement A – Methods for delineation of infestation, including both adult quagga mussels and veligers (the larval form of quagga mussels)


Requirement B – Methods for control or eradication of adult quagga mussels and decontamination of water containing larval mussels

Requirement C – A systematic monitoring program to determine any changes in conditions

Containment and Control Measures

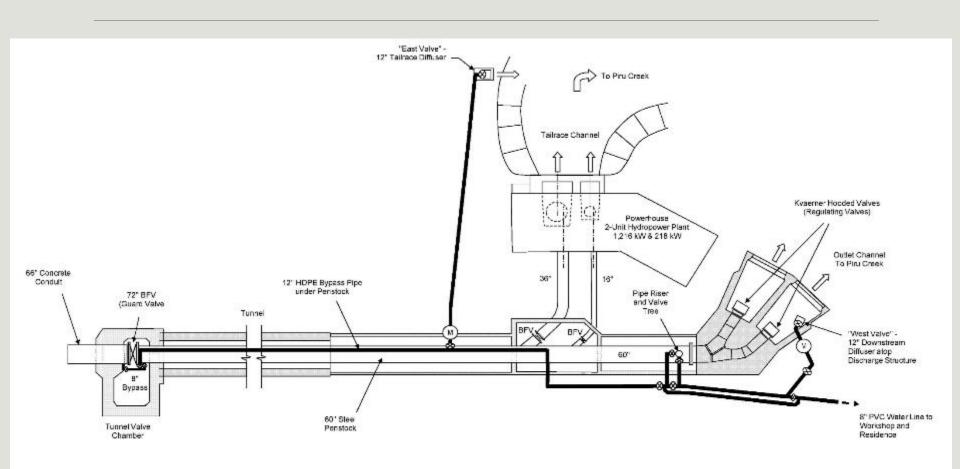
- Measures currently implemented
- Measures actively being developed or requiring more Information
- Measures analyzed and considered Infeasible
- •Where does this leave us?

3. Measures Currently Implemented -Containment

3. Measures Currently Implemented

Containment - Water Vessels, Equipment, and Vehicles

- Recreational Vessels Public Outreach, Training, Inspections, QID, and Decontamination
- Shoreline Fishing Public Outreach, Signage, and Ordinance Enforcement
- United Equipment and Vehicles Decontamination SOPs
- Firefighting Equipment and Vehicles MOUs (1 obtained, 2 in progress)


Measures Currently Implemented Containment - Quagga Mussel Transference to Lower Piru Creek

Santa Felicia Dam Infrastructure

3. Measures Currently Implemented Containment - Quagga Mussel Transference to Lower Piru Creek

Santa Felicia Dam Infrastructure

3. Measures Currently Implemented

Containment - Quagga Mussel Transference to Lower Piru Creek

- Recommissioned hydroelectric Turbine Unit 1 and currently operating to maximize shear stress when possible
- Unit 1 \$250,000
- Cost Recovery Approximately 10 years
 Revenue \$30,000/year
- Unit 2 \$386,000

3. Measures Currently Implemented SFD Quagga Mussel Veliger Transport Study (GEI, May 2016) – Existing Infrastructure

- Turbulence and shear forces can increase veliger mortality
- Limited field studies
 - San Diego County Water Authority 2010
 - Denver Water Company 2009
- Challenges
 - Duration
 - Flow transitions
 - Energy

\$92,000 to prepare technical memorandums

3. Measures Currently Implemented

Containment - Quagga Mussel Transference to Lower Piru Creek

Operations to Maximize Shear Stress

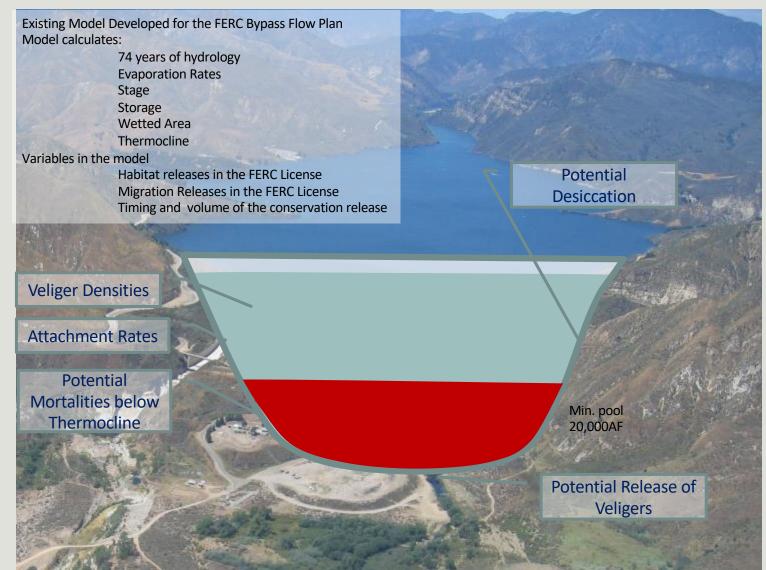
Release Type	Habitat Releases					Transitional Flows		High-Volume Releases (Migration/Conservation Releases)	Spill Events
Release Range (cfs)	5	7 10 15		20	20	32-199	200-400	10–150,000*	
Release Mechanism	Low- flow valves	Turbine Unit 1 *not always feasible at low end of range because of insufficient head pressure			Low-flow valves	Cone Valves	Turbine Unit 1 + Turbine Unit 2 + Cone valves	Santa Felicia Dam Spillway and Spillway Channel	
100% Veliger Mortality?	Yes for sizes 235 and larger;	Yes for 200 μn Iargo	m and	Yes for sizes 115 μm and larger;	Yes for sizes 89 µm and larger;	Yes for sizes 200 μm and larger;	No	Yes – 107 cfs through turbines for sizes 89 μm and larger	Yes
	No for sizes 200 and smaller	No for 115 μn smal	n and	No for sizes 89 μm and smaller	No for sizes 57 μm and smaller	No for sizes 115 µm and smaller		No – extra 93-293 cfs would have to go through cone valves where most survive up to 200 cfs	

3. Control Measures Implemented – Mechanical Removal of Quagga Mussels

Mechanical Removal from Infrastructure 5 Times/Year

3. Control Measures Implemented – Mechanical Removal of Quagga Mussels

	2015	2016
Biomass Removed	4,048 kg	1,671 kg
Cumulative Number of Dives (5 Divers)	235 dives	229 dives
Cumulative dive time for 5 divers	12,260 minutes	11,080 minutes


3. Control Measures Implemented – Lower River System

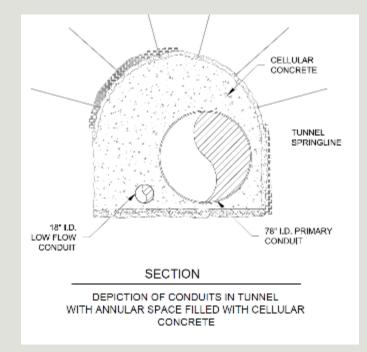
- DRAFT Lower River System Quagga Control Operations Manual
- Isolated irrigation systems from the Santa Clara River surface water system
- All surface water directed to recharge basins
- Recharge basins are completely dried-out in the off season

3. Containment and Control Measures Being Developed/Requiring More Information

- Lake level management
- •Chemical treatment (for Lake Piru, Piru Creek, and infrastructure)
- •New intake structure and outlet works

3. Measures Being Developed/Requiring More Information-Lake Level Management

3. Measures Being Developed/Requiring More Information-Chemical Treatment Pilot Study


 Potassium chloride (potash)
 Copper sulfate pentahydrate (EarthTecQZ®)
 Citric acid formulation (ZMX)
 Carbon dioxide

> 3 Treatment Concentrations (low, medium, high) x 3 Temperatures (10°C, 18°C, and 25°C)

3. Measures Being Developed/Requiring more Information – New Intake Structure and Outlet Works

New project to replace existing outlet works

- Pipe redundancy (78" and 18" diameter)
 - Allow for treatment of a pipe while maintaining required flows
- Movable intake screens
- Chemical Treatment Challenges
 - Corrosion
 - Contact Time vs. Toxicity
 - Quantity
 - Flow Range
 - Maintenance submerged/encased infrastructure

3. Measures Being Developed/Requiring more Information – New Intake Structure and Outlet Works

Example: Carbon Dioxide Continuous Treatment

Flow (cfs)	CO2 at 175 mg/L (lb/day)	CO2 at 200 mg/L (lb/day)
5	4,800	5,400
7	6,600	7,600
20	18,900	21,600
200	188,400	215,300
500	470,900	538,200

•CO2 numbers were rounded up to the nearest hundred.

Contact Time - testing shows 100% mortality when exposed for 10 days at 18°C

18" Diameter (1,200 ft long pipe)							
Flow (cfs)	Time (minutes)						
7	5						
20	1.8						

3. Measures Being Developed/Requiring more Information – New Intake Structure and Outlet Works

Maximizing Shear Stress

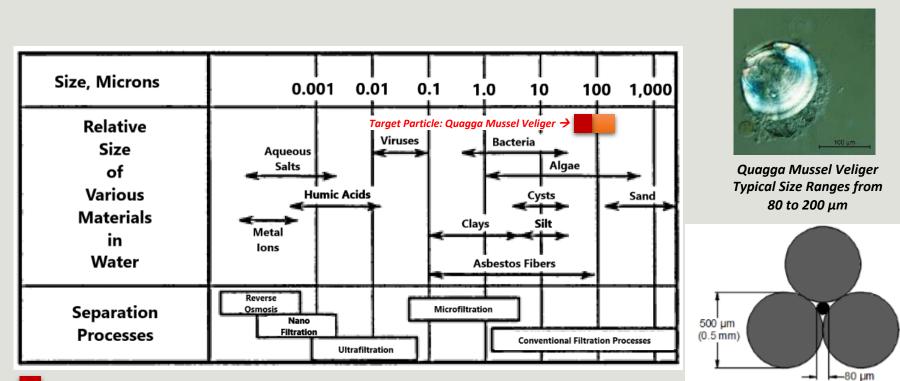
 Can continue increased veliger mortality through hydropower plant

Shear Stress Challenges

- Operational Reservoir Elevation
- Dissolved Oxygen
- Wear on infrastructure

3. Other Measures Requiring More Information or More Commercial Development

Surface coatings (nonfouling release)

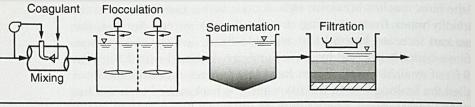

- Coatings for Mussel Control Results from Six Years of Field Testing (Bureau of Reclamation, July 2014)
- Field Tested Coatings

Electrical or Acoustic deterrents

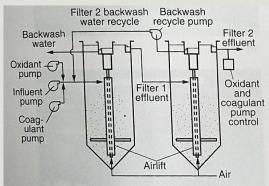
- Prevents attachment but does not kill veligers
- Cavitation is already a concern in the infrastructure
- Need more technological improvements

3. Measures Analyzed and Considered Infeasible at This Time

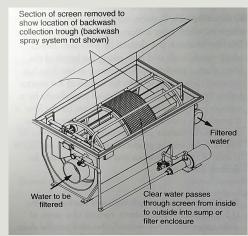
- Filtration
- Pipelines
- Manifold System
- Tarping
- Suspending or Modifying Releases
- Plankton Tows
- Fish Biocontrol
- Zequanox

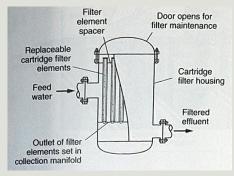


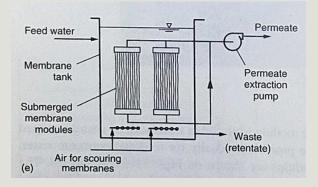
Quagga Mussel Veliger – Ability to Pass Through Opening Smaller than Actual Size


Quagga Mussel Veliger – Actual Size

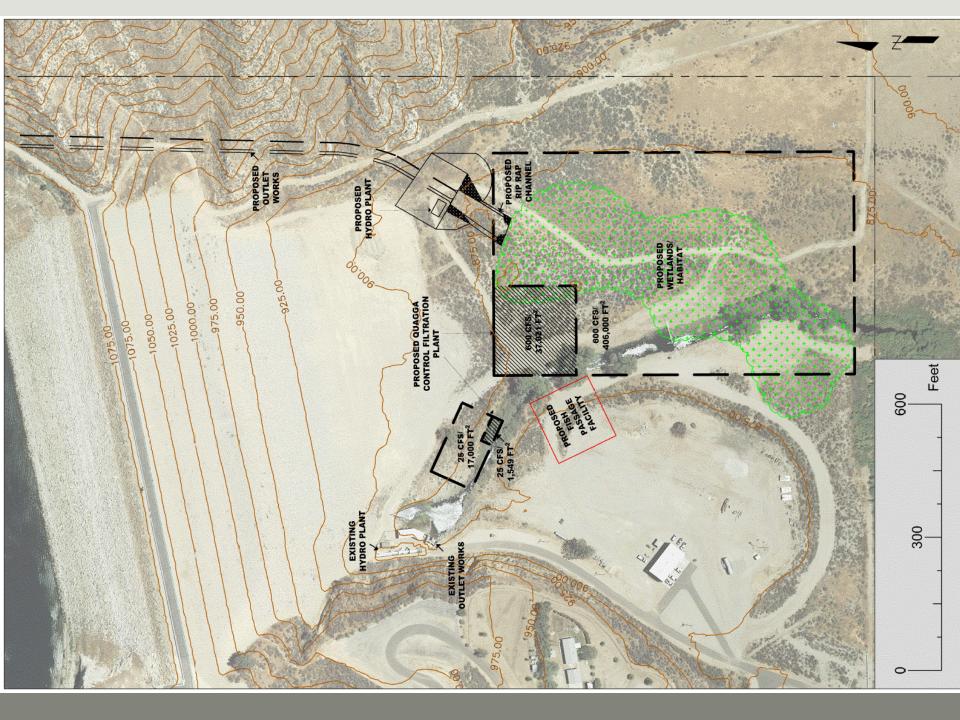
Generalized Filtration by Straining of 80 μm Particle


Conventional Filtration


Two-Stage Filtration


Microscreen Filter

Cartridge Filter



Membrane Filters

Туре	Treatment Process	Principal Removal Mechanism		Approximate Turbidity	Approximate Particle	Typical Flow Range	Typical Pressure Range	Filtration Suitability	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	incutine in rocciss	Straining	Depth Filtration	Requirement	Size Removal Range	Typical Flow Hallbe	Typical Pressure hange	Lake Piru / Santa Felicia Dam	Freeman Diversion / Lower River System
Conventional Filtration (Rapid or Slow Sand)	 Coarse Screen Coagulant Flash Mixing Flocculation Sedimentation Filtration 	x	x		1 μm or larger	2 to 6 gpm/ft ²	Gravity or pressurized vessel, up to terminal head loss	Plausible	Plausible
Direct Filtration	1. Coarse Screen 2. Coagulant Flash Mixing 3. Flocculation 4. Filtration	x	х	< 15 NTU	1 μm or larger	2 to 6 gpm/ft ²	Gravity or pressurized vessel, up to terminal head loss	Not possible - turbidity can exceed 15 NTU	Not possible - turbidity regularly exceeds 15 NTU
In-line Filtration	1. Coarse Screen 2. Coagulant Flash Mixing 3. Filtration	x	х	< 10 NTU	1 μm or larger	2 to 6 gpm/ft ²	Gravity or pressurized vessel, up to terminal head loss	Not possible - turbidity can exceed 10 NTU	Not possible - turbidity regularly exceeds 10 NTU
Two-stage Filtration	1. Coarse Screen 2. Coagulant Flash Mixing 3. Roughing Filter 4. Filtration	х	х	< 100 NTU	1 μm or larger	2 to 6 gpm/ft ²	Gravity or pressurized vessel, up to terminal head loss	Plausible - but turbidity can slightly exceed 100 NTU	Not possible - turbidity regularly exceeds 100 NTU
Bag/Cartridge Filtration	 Coarse Screen Bag/Cartridge Filtration 	х		< 5 NTU	1 μm or larger	< 1 gpm/ft ²	Up to 30 psid	Not possible - turbidity exceeds 5 NTU	Not possible - turbidity regularly exceeds 5 NTU
Microscreen - Disk or Drum	1. Coarse Screen 2. Microscreen	х		< 40 NTU	10 µm or larger	2 to 5 gpm/ft ²	Gravity up to terminal head loss	Plausible - but turbidity can exceed 40 NTU	Not possible - turbidity regulary exceeds 40 NTU
Microfiltration - Membrane	 Coarse Screen Bag/Cartridge Filters, or Microscreen Microfiltration 	x		Prescreening: < 40 NTU Microfiltration: < 10 NTU	0.1 μm or larger	24 to 35 gpd/ft ² or 0.017 to 0.024 gpm/ft ²	5 to 30 psig	Plausible - but turbidity can exceed 40 NTU	Not possible - turbidity regulary exceeds 40 NTU

Table 1 – Summary of Proposed Filtration Plant Design Criteria and Costs for Quagga Mussel Control at Santa Felicia Dam (GEI, 2016)									
Release Activity	Flow Range (cfs)	Proposed Filtration Plant Design Criteria	Construction Cost	Annual O&M Cost					
Low-Flow Habitat Release (Year Round) Modified Habitat	5 to 7	<u>Capacity:</u> 25 cfs <u>Filter Type:</u> Gravity, Anthracite/Sand/Ilmenite <u>Flow Rate:</u> 8 gpm/ft ²	\$14,920,000	\$640,000 – \$1,000,000					
Flow (Jan to Jun)	7 to 25	<u>Filter Area:</u> 1,549 ft ² <u>Total Plant Area:</u> 17,000 ft ²		\$1,000,000					
Fish Migration (Jan to Jun)	7 to 200	<u>Capacity:</u> 600 cfs							
Conservation Release (Aug to Nov)	7 to 400	<i>Filter Type:</i> Gravity, Anthracite/Sand/Ilmenite <i>Flow Rate:</i> 8 gpm/ft ² <i>Filter Area:</i> 37,021 ft ²	\$185,710,000	\$3,383,333 – \$8,150,000					
Emergency Draw- down	600 to 800	<u>Total Plant Area:</u> 406,000 ft ²							

Table 1 – Summary of Proposed Filtration Design Criteria and Costs for Quagga Mussel Control at the Freeman Diversion and Lower River System Facilities (AECOM, 2016)									
Alternative	Flow Range (cfs)	Proposed Filtration Design Criteria	Construction Cost	Annual O&M Cost					
In-River Infiltration Gallery		<u>Capacity:</u> 75 cfs <u>Filter Type:</u> Gravity, Coarse Sand/Gravel, Rock <u>Flow Rate:</u> 1.5 to 3 gpm/ft ² <u>Filter Area:</u> 28,050 ft ²	\$34,820,000 – \$51,710,000	\$1,150,000 – \$1,650,000					
In-Pond Infiltration Gallery	0 to 75	<u>Capacity:</u> 75 cfs <u>Filter Type:</u> Gravity, Coarse Sand/Gravel, Rock <u>Flow Rate:</u> 3 gpm/ft ² <u>Filter Area:</u> 12,342 ft ²	\$22,390,000 – \$22,920,000	\$1,150,000 – \$1,400,000					
Saticoy Well-Field Expansion (Natural Filtration)		<u>Capacity:</u> 75 cfs (limited by pumping only) <u>Filter Type:</u> Slow Sand, Existing Ground <u>Flow Rate:</u> Not evaluated <u>Filter Area:</u> 133 acres	\$8,760,000 – \$13,450,000	\$1,190,000 – \$1,530,000					

3. Measures Analyzed and Considered Infeasible – Pipeline Options

3. Measures Analyzed and Considered Infeasible – Piping Around Lake Piru

Description: Option 1A

Analysis: Installation of two (2) 36-inch pipelines to accommodate 7-20 cfs flows and redundancy from Middle Piru Creek to Lower Piru Creek

Cost: \$17.9 M

Explanation for Infeasibility Determination: Cost and alignment issues. Cost does not include HDD, permits, EIR, operational/energy costs, and pumps. Cannot guarantee continuous habitat flows to Lower Piru Creek. Cannot provide migration flows.

3. Measures Analyzed and Considered Infeasible – Piping Around Lake Piru

Description: Option 1B

Analysis: Installation of two (2) pipelines. One 36-inch line to accommodate 7-20 cfs. One 72-inch line to accommodate 200 cfs migration flows from Middle Piru Creek to Lower Piru Creek

Cost: \$22.2 M

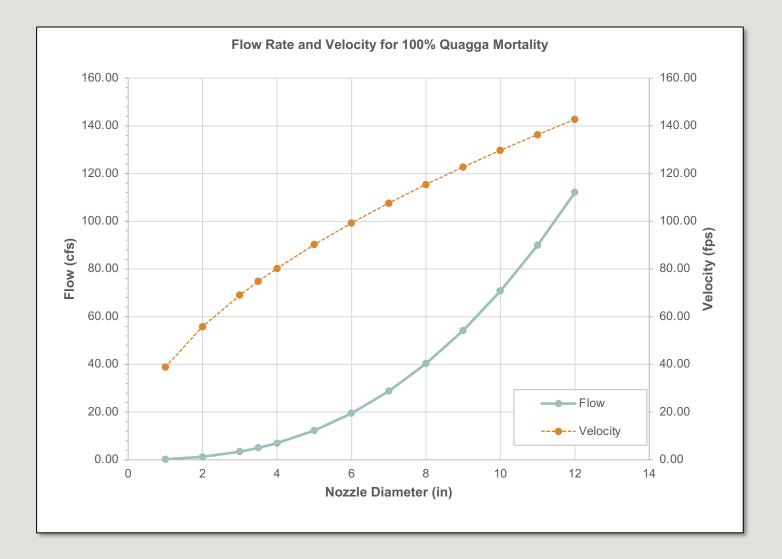
Explanation for Infeasibility Determination: Cost and alignment issues. Cost does not include HDD, permits, EIR, operational/energy costs, and pumps. Cannot guarantee continuous habitat flows or migration releases to Lower Piru Creek.

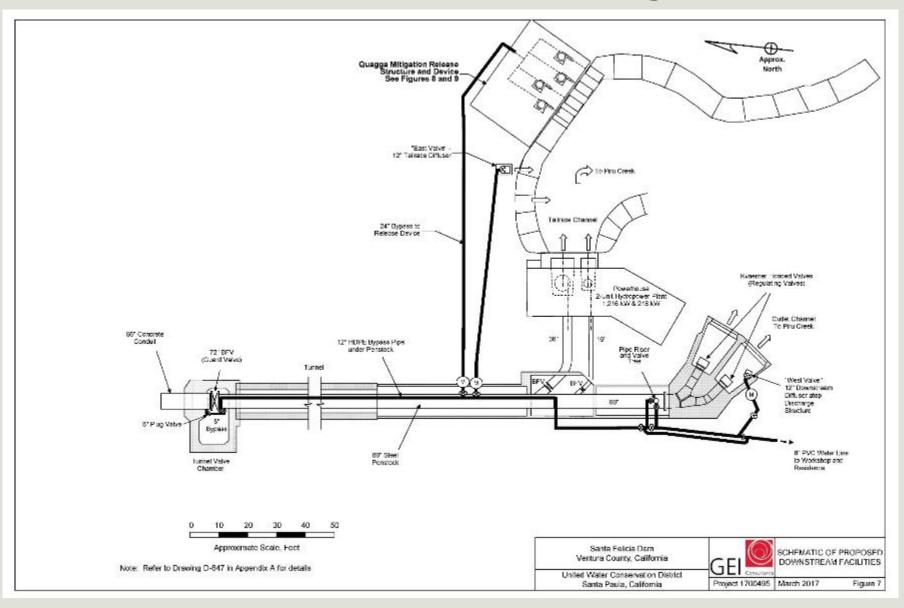
3. Measures Analyzed and Considered Infeasible – Piping around Lower Piru Creek

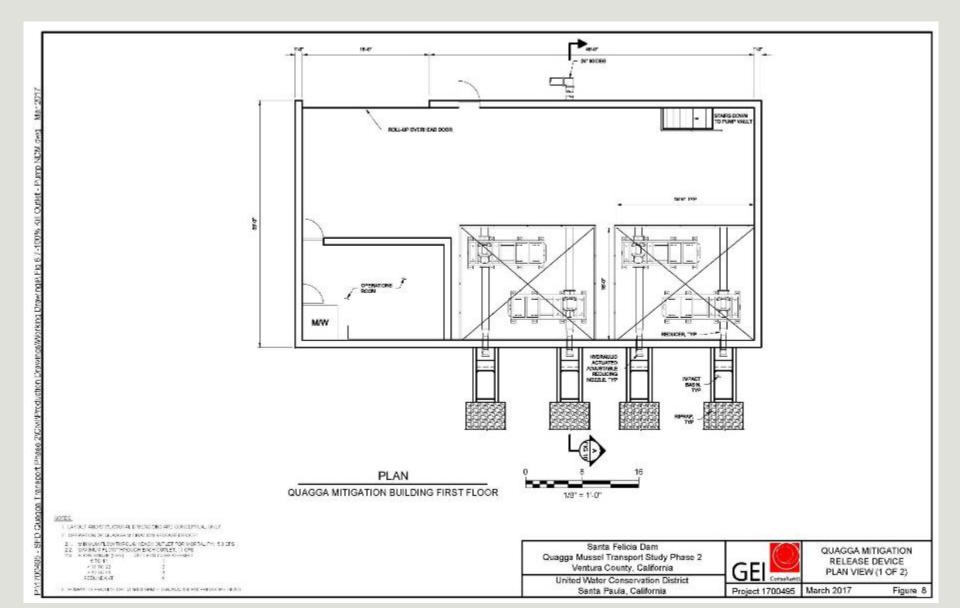
Description: Option 2

Analysis: Installation of two (2) 36-inch pipelines from Lake Piru Reservoir to Piru Spreading Grounds

Cost: \$51.5 M


Explanation for Infeasibility Determination: Cost and alignment issues. Cost does not include HDD, permits, EIR, land purchase/easements, and pumps. Water pumped back to dam would have significant degradation of water quality. Currently, no water rights to extract water from this area (SIGMA Rights).


Description: Manifold system designed to increase shear stress – existing facilities


Analysis: GEI Technical Memorandum – Santa Felicia Dam Preliminary Quagga Mussel Veliger Transport Study (July 2017)

Cost: \$XX M

Explanation for Infeasibility Determination: Capital cost and continual operation cost limitations. Physical flow limitations. Frequent repairs/replacement due to continual cavitation damage. Only addresses flows from 5 cfs to 25 cfs.

Containment/Control Measures Analyzed and Considered Infeasible – Tarping

3. Where does this leave us?

- Options narrowing
- •Fish and Game Code conflicts with Federal ESA and FERC license
- •Toxicity x contact time is a continuing challenge for infrastructure design
- •Value to considering control and containment in the context of monitoring results and what we know about quagga biology and conditions in the SCR system
- •Reality of fiscal constraints

4.1 Financial Considerations

- •FY 2016-2017 Quagga actual expenditures -- \$600,000
- •District total budget for FY 2017-2018 -- \$30 million
- Capital costs for quagga control 10s to 100s millions
- •Existing dam safety & ESA compliance obligations Minimum of \$150 million
- Limited ability to fund quagga control program
 - Total borrowing capacity \$50 million
 - Limited ability to raise user charges
 - Pending reductions in groundwater pumping (SGMA)
 - External funding sources?

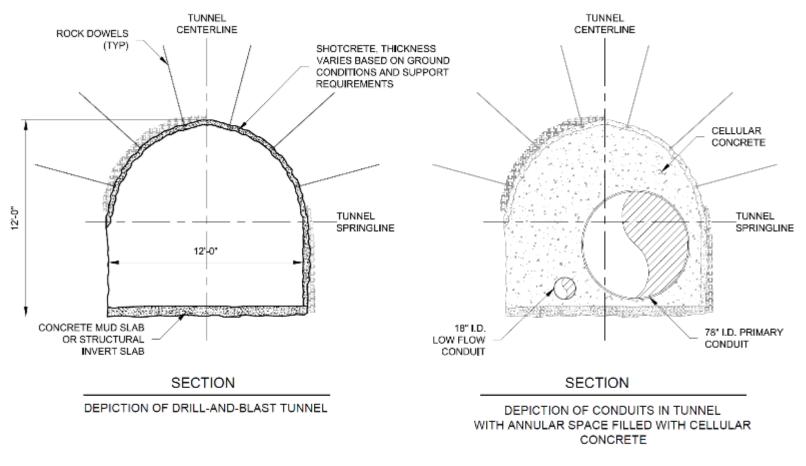
5. Fish and Game Code – What is necessary to approve United's Plan?

Fish and Game Code §2301(d)(1)

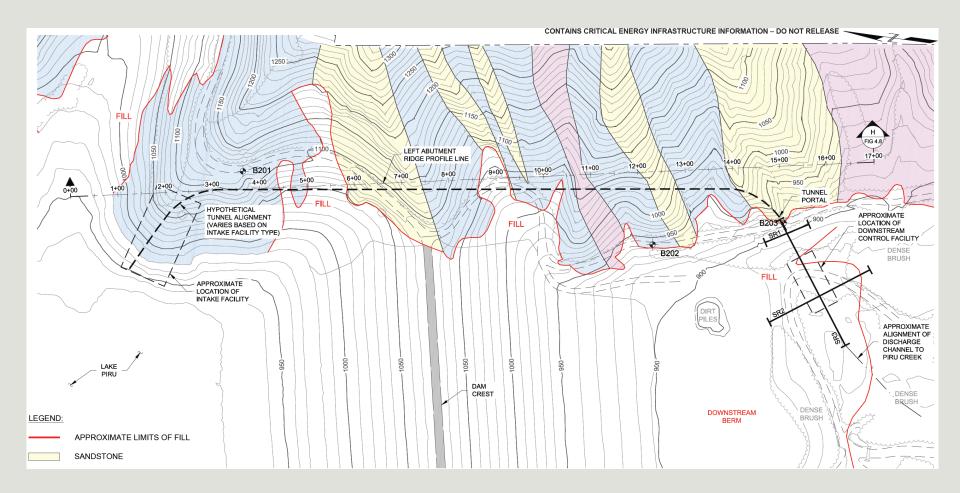
Requirement A – Methods for delineation of infestation, including both adult quagga mussels and veligers (the larval form of quagga mussels)

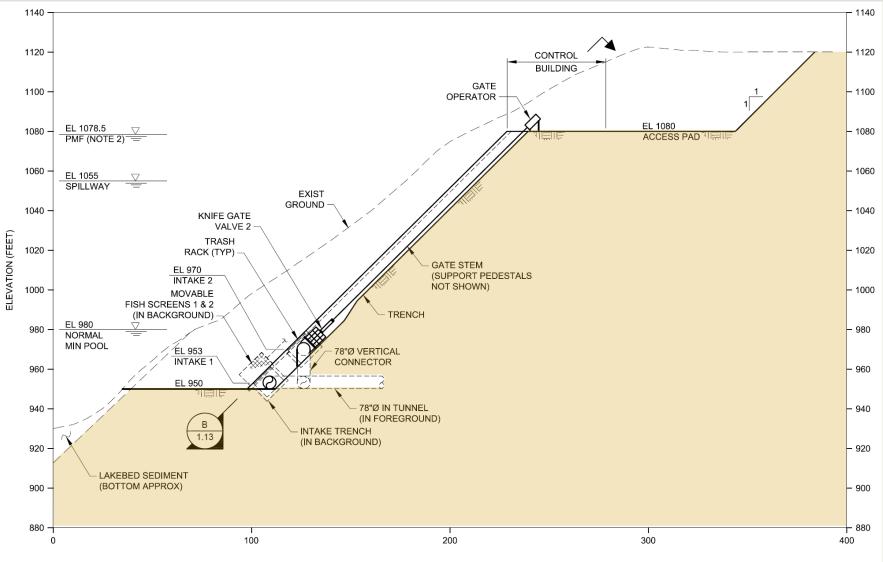
Requirement B – Methods for control or eradication of adult quagga mussels and decontamination of water containing larval mussels

Requirement C – A systematic monitoring program to determine any changes in conditions

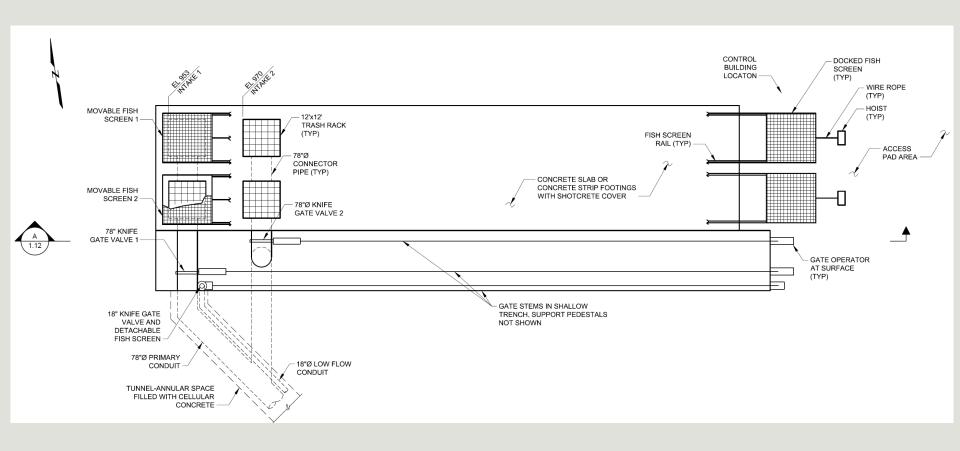

6. Future Directions

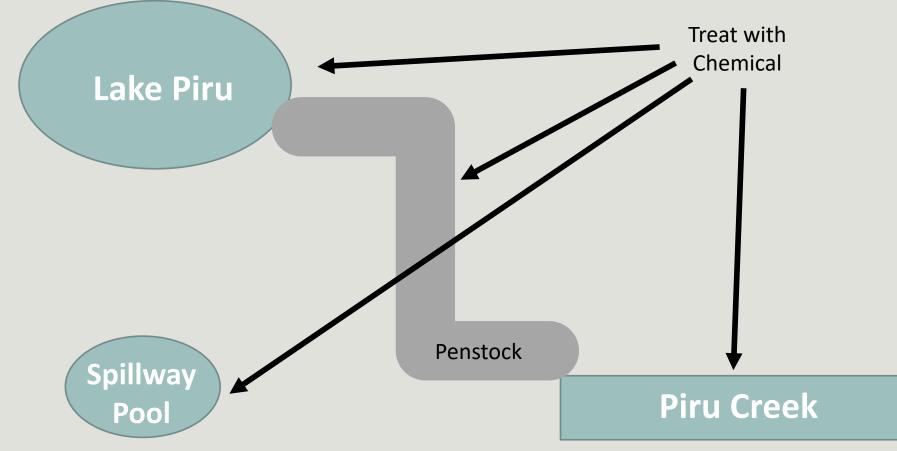
- Monitoring
- Containment
- Control
- Other


Extra Slides if Needed for Discussion


Summary of Quagga Mussel Survival through the Santa Felicia Dam Outlet Works – Maximum Discharge, (GEI, July 2017)

Location		Pens (5-ft	stock Dia.)	Cone Valves		PH Unit 1 164kW	
Maximum Disch	arge (cfs)	70	00	5	00	20.3	
Veliger Life Stage	Size (um)	d*	Survival	d*	Survival	d*	Survival
Trochophore	57	0.62	100%	1.17	100%	1.92	98%
Trochophore	89	0.98	100%	1.82	98%	2.99	0%
D-Shaped Veliger	115	1.26	100%	2.36	94%	3.87	0%
Veliconcha	200	2.19 97%		4.10	0%	6.72	0%
Pediveliger	235	2.58	76%	4.81	0%	7.90	0%
Plantigrade	329	3.61	0%	6.74 0%		11.06	0%
Location		PH Unit 2 806 kW		Low-flow BFVs		Plug Valve	
Maximum Disch	arge (cfs)	87	' .6	10		7	
Veliger Life Stage	Size (um)	d*	Survival	d*	Survival	d*	Survival
Trochophore	57	2.30	95%	1.08	100%	1.12	100%
Trochophore	89	3.59	0%	1.69	99%	1.75	99%
D-Shaped Veliger	115	4.63	0%	2.18	97%	2.26	96%
Veliconcha	200	8.06	0%	3.80	0%	3.93	0%
Pediveliger	235	9.47	0%	4.46	0%	4.62	0%
Plantigrade	329	13.26	0%	6.25	0%	6.47	0%




DISTANCE (FEET)

Pilot Study Preliminary Results

Treatment	Concentration	Temperature				
Treatment	Concentration	10°C	18°C	25°C		
	Low	N/A	N/A	Pending		
	(150 ppm)		,	i chung		
Potassium Chloride	Medium	N/A	18 days	Pending		
Polassium Chionue	(200 ppm)	N/A	10 uays	rending		
	High	N/A	14* days	Pending		
	(250 ppm)	N/A	14 Udys	renuing		
	Low	NI / A	NI / A	Donding		
	(60 ppb)	N/A	N/A	Pending		
Copper Sulfate	Medium			Donding		
Pentahydrate	(120 ppb)	27 days	24 days	Pending		
(EarthTecQZ)	High		15 days	Donding		
	(180 ppb)	21 days	15 days	Pending		

Aggressive Treatment or Eradication

Regulatory Requirements:

Waivers to FERC license requirements (water release and recreation)

Application of EPA registered molluscicide

Section 7 Consultation under FESA - burden of proof that there are no effects to O. mykiss or

there is an acceptable level of sublethal effects?????

FREEMAN DIVERSION QUAGGA MUSSEL CONTROL

FEASIBILITY ASSESSMENT AND PREFERRED ALTERNATIVES

Robert Richardson Associate Engineer UWCD

Quagga Mussel Control Options

Proceeding of the second secon

O PRC COM

D Sod not

p Qua 8.5.

PRC COM PRC COM

		•
CHEMICAL	BIOLOGICAL	PHYSICAL
Potassium Permanganate ROS: No DBPs, low dose for adult mussels IONS: Expensive, not acutely toxic to veligers, pink coloration	PROS: May be effective for still water CONS: Likely ineffective for turbid water or rapid flow	Ultraviolet Light PROS: Disrupts target organism DNA rendering it unable to reproduce, no residuals left CONS: High power cost, high turbidity can render this technology ineffective
Chlorine ROS: Toxic to adults and veligers, relatively inexpensive ONS: Elevated DBP risk, toxic to other species, adults can close in response		Thermal High temperatures of over 100°F are needed to achieve 100% mortality. Power plant heat or a large fuel source is needed for this option.
Chloramines ROS: Lower DBP risk compared to chlorine, longer lasting residual IONS: May be less toxic than chlorine, requires chlorine and ammonia storage		Filtration PROS: Can be highly effective at removing small particles if designed appropriately CONS: Small particles can pass through smaller pore sizes, affected by turbidity changes
Chlorine Dioxide ROS: Lower DBP risk compared to chlorine, reduced contact time CONS: Requires two chemical storage, chlorite/chlorate formation		Coatings/Resistant Materials Special coatings and smooth surfaces may prevent mussel attachment in structures, but the use of these has mixed success in the industry. Very difficult to apply for a large system.
Dzone ROS: Low DBP risk, stronger oxidant compared to chlorine, no residual left CONS: Bromate formation, very high cost, large footprint for on-site generation		Turbulence PROS: Turbulence over a certain period of time can result in high mortality rates of veligers CONS: Only works in certain locations with high-heads and controlled velocities
Deoxygenation odium sulfite can be added to water to scavenge oxygen. Large scale implementation has ot been employed. Long-term effectiveness is unknown.		Alternative Sources Supplementation of water supply with a "veliger-free" source would help (such as recycled water), but would be insufficient to meet existing demand.
DH Control Quagga control involves pH ranges below 7 and above 9.5. Drinking water requires 6.5 to 4.5. Sulfuric acid can be added, but the long-term effectiveness is unknown.		O&M PROS: Control measures could be applied in specific locations, potentially lowest cost option CONS: Requires extensive monitoring, difficult to control
Copper/Potassium Sulfate ROS: Effective biocide, best applied to still water ONS: Copper in drinking water, could be toxic to multiple aquatic organisms and crops		
Proprietary Molluskicides ROS: May be effective for still water ONS: Likely ineffective for turbid water or rapid flow		
Could be implemented, with minor complications	Could be implemented, with significant complications	Highly likely to be unsuccessful

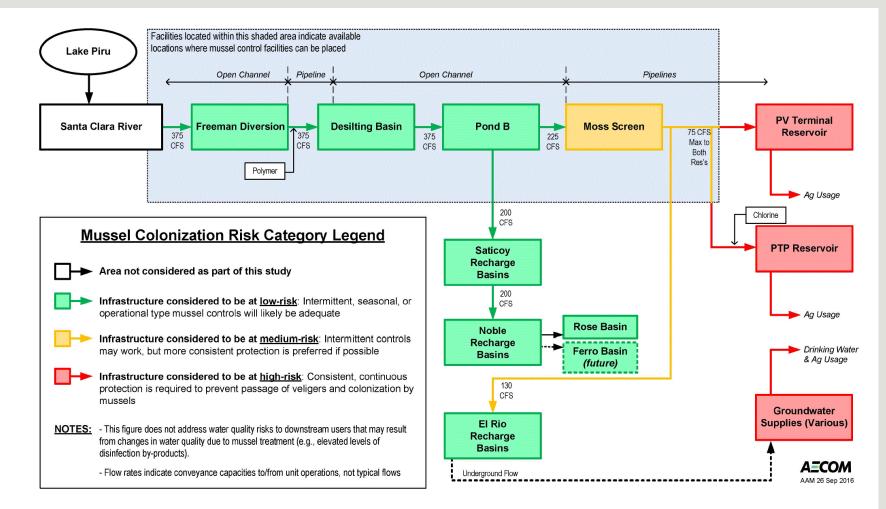
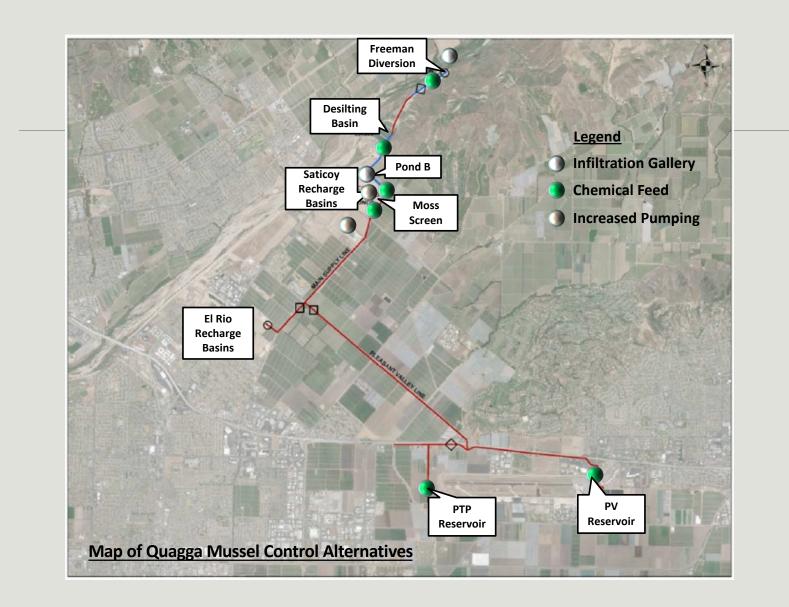



Figure 6-1. Infrastructure Overview and Locations Requiring Veliger/Mussel Control

Table 7-2. Multi-Criteria Analysis Categories and Resulting Rankings for Mussel Control Alternatives

	MCA Category Scoring From 1 to 5 (5 is Best)									
Alternative	Life-cycle Cost	Permitting	Constructability	Need for Secondary O&M	Footprint	Complexity	Additional Testing Required	Overall Risk Protection		
1. River Infiltration Gallery	1	1	1	1	1	1	1	5		
2a.Chemical Feed at Freeman	1	2	2	5	1	1	1	2		
2b. Chemical Feed After Desilting Basin	1	2	2	5	1	1	1	2		
3. Pond Infiltration Gallery	2	5	4	2	2	2	1	5		
4. Increased Pumping at Recharge Basin	3	4	4	2	5	1	5	5		
5a.Chemical Feed Before Moss Screen	4	4	4	3	2	2	2	2		
5b.Chemical Feed After Moss Screen	4	4	4	2	2	2	2	2		
6. Pre-Reservoir Chemical Feed	4	3	3	1	3	2	2	3		
7. Non-Capital Facility Control	5	5	5	1	5	3	5	2		
MCA Category Weightings:	30%	5%	5%	10%	5%	10%	10%	25%		

ΦΛΝΙΖ	ALTERNATIVE	RELATIVE	OVERALL RISK	20-YEAR LIFE CYCLE COST (MILLIONS OF \$)		
RANK	ALIEKNATIVE	PERFORMANCE	PROTECTION	MIN	ΜΑΧ	
1	Non-Capital Facility Control	1.00	2	\$3.4	\$7.0	
2	Increased Pumping at Recharge Basin	0.99	5 🗙	\$22.8	\$41.0	
3 (TIE)	Pond Infiltration Gallery	0.80	5	\$32.4	\$53.5	
3 (TIE)	Chemical Feed Before Moss Screen	0.80	2	\$10.6	\$24.6	
3 (TIE)	Pre-Reservoir Chemical Feed	0.80	3	\$4.7	\$10.5	
4	Chemical Feed After Moss Screen	0.77	2	\$8.4	\$19.0	
5	River Infiltration Gallery	0.55	5	\$41.8	\$100	
6 (TIE)	Chemical Feed at Freeman	0.48	2	\$45.3	\$85.6	
6 (TIE)	Chemical Feed After Desilting Basin	0.48	2	\$22.8	\$53.5	

Most likely to guarantee 100% removal of quagga veligers